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Introduction

As with double integrals, it can be useful to introduce other 3D
coordinate systems to facilitate the evaluation of triple integrals.

We will primarily be interested in two particularly useful coordinate
systems: cylindrical and spherical coordinates.

Cylindrical coordinates are closely connected to polar coordinates,
which we have already studied.

Spherical coordinates, however, are a truly “new” coordinate
system, so we will spend more time studying them.
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Cylindrical Coordinates

Given a point P € R3 with rectangular coordinates (x, y, z), its
cylindrical coordinates (r,0, z) are defined by:

A
p
X = rcosf
y =rsinf
z z=z
P2 =242
; ~.r = dV =dxdydz =rdzdrdf

e y

That is, we use the usual z-coordinate, but work in polar
coordinates in the xy-plane
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SETES

Cylindrical coordinates are useful for describing regions E C R3
whose xy-projections have “nice” polar descriptions.

Evaluate /// e? dV where E is enclosed by z = 1+ x° + y2,
E

x? 4+ y? =5 and the xy-plane.

Solution. The region E is Type 1 with “bottom” z =0, “top”
z =14 x>+ y?, and xy-projection x> + y? < 5.

See Maple diagram.
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Using cylindrical coordinates we have

2 V5 pl4r?
///ede:/ / / e’rdzdrdf
E
27 1+4r2
:/ d9></ / e“rdzdr

V5 z=1+r? NG )
= 27T/ e‘r dr = 27r/ rett — rdr
0 z=0 0

, V5
=x et — 2 —=|7(e® —e—5)|

0
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Evaluate /// x dV where E is enclosed by z=0, z=x+ y + 5,
E
x> +y?>=4and x>+ y2=0.

Solution. The region E is the portion of the tube centered on the
z-axis, with inner radius 2, outer radius 3, between the planes
z =0 (the "bottom”) and z = x + y + 5 (the “top”).

See Maple diagram.

This is a Type 1 region, with cylindrical description
0<z<rcosf+rsind+5 2<r<3and0<0<27.
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Therefore

27 3 r cos 0+rsin 6+5
///de:/ / / rcos@rdzdrdf
E 0 2 Jo

2,3
:/ / r?cosf(rcosf + rsind +5) drdf
o J2

27 3
:/ / r3cos? 0 + r3sinf cos + 5r° cos O dr db
0 2

3 27 1 2
:/ / 3 (#) + r3sinfcosf + 5r% cos 6 db dr
2 Jo

0=2m

3 . 22
0 20 0
:/ B+ > + ren +5r%sin6 dr

3 p
:77/ Pdr=n—
5 4
O
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Spherical Coordinates

Given a point P € R3, its spherical coordinates (p, 0, ¢) are given

by:
P
To describe all of R3 we need:
¢ 0 <p< oo,
0
i 0<6<2n,
0<op<m.
(2] X

e y
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SETES

Describe the following surfaces (k is a constant).

1. p = k: Sphere of radius k, centered at (0,0, 0).
2. 8 = k: Vertical half-plane “attached to" the z-axis.

3. ¢ = k: Cone with vertex at (0,0,0). Note:

@ The cone opens upward if 0 < ¢ < 7/2.
@ The cone opens downward if 7/2 < ¢ < 7.

@ The cone is actually the xy-plane if ¢ = /2.

[BETI[LEY Cylindrical and Spherical Coordinates



More Examples

Describe the following regions.

1. p < 2: Solid ball of radius 2, centered at (0,0, 0).

2. p<2,0< ¢ <m/2: “Northern hemisphere” of preceding ball.

3. 2 < p < 3: Spherical shell or “cored” ball, with inner radius 2,
outer radius 3, and center (0,0, 0).

4.2<p<3,0<60<7/2 0< ¢ <7/2: Portion of the cored
ball above in the first octant.

5. p<3,0< ¢ < m/4 Cone with a spherical “cap” of radius 3.

6. p <3, 7/4 < ¢ <3nm/4: Solid ball with two cones removed.
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Relation to Rectangular Coordinates

We see that:
P x = rcosf
= psin ¢ cos 6
%
A ¢ y =rsinf
z = psingsinf
Z = pcos ¢
0 r X P
e y =x*+y?+ 2%

To compute integrals in spherical coordinates, we need to relate
dV = dxdy dz to dpd¢ db.
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Change of Variables in Triple Integrals

If E, E’ C R? are connected by a transformation
T(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))

(i.e. T: E' — E), one can use a Riemann sum argument to derive
the relationship

et arey= [f oo [5E535

where

Ox/0u 0x/0v 0Ox/Ow
g(xﬁ_ dy/du By dv Dy dw
(Wv.w) \oz/ou dz/ov 0z/ow

is the Jacobian of the transformation.
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The Jacobian of Spherical Coordinates

For the spherical coordinate transformation

X = psin¢cos b,
y = psin¢gsin,
Z = pcos ¢,

we have

a(x,y,2) singcosf —psingsinf pcospcosb
8%}0/7 singsinf  psingcosf  pcosdsinf| = —p?sin o,
(p,0,9) cos ¢ 0 —psin¢

so that

dV = dxdy dz = p®sinpdpd¢ db|.
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SETES

Evaluate /// eVX* Y122 4V where E is the portion of the ball
E

x2 + y? + z2 < 9 in the first octant.

Solution. In spherical coordinates we have

w/2 prw/2 3
/// eV X ty?+z2 dV:/ / / e’ p?singdpdep df
E 0 0 0
2 /2 3

w/
:/ d0></ sinqbdgbx/ p’e’ dp
0 0 0
T /2 3
=3 <— cos ¢ ) <(p2 —2p+2)e’ )
0

0
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Example 4

Evaluate /// y dV/, where E is bounded by the xz-plane and the
E
hemispheres y = v/9 — x2 — z2 and y = V16 — x2 — 22,

Solution. E is the region between the spheres x> + y? + z? = 9 and
x? 4+ y? + 2% =16 with y > 0, i.e. the “right” half of a cored ball.

This region would be quite difficult to express in rectangular
coordinates, but is easy to describe spherically.
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In spherical coordinates we have

T s 4
///de:/ / / psingsinfp?singdpdg db
E 0 0 3
™ s 4
:/ sin9d9></ sin2¢d¢x/ pdp
0 0 3
™ T o 4 14
= <— cos 6 )/ 1—cos2p Cos 2¢ do P
o/ Jo 2 413

_2<¢> sin 2¢) “) (256—81) 1757
“\2 o 4 |4

2 4

[BETI[LEY Cylindrical and Spherical Coordinates



Find the volume of the spherical “cap” of height h of a sphere of

radius R.

[BETI[LEY

Solution. Position the sphere at
the origin with the cap at the
north pole.

Let ¢g denote the angle that the
edge of the cap makes with the
north pole.
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The volume of the cap is then the volume of the spherical region E
described by 0 < p < R and 0 < ¢ < ¢, minus the volume of its
lower conical portion (which can be computed from elementary
geometry).

We have

Vol(E) = /// dv = /%/%/ p’singdpdedf
:/0 d9></0 sm<bdgb></0 p*dp

bo 3|k 3
) (% ) _ 2R (1 —cos¢p).
0

0 3
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Looking at a cross section through the north pole we find that

Thus 5 )
21R 2nR2h
Vol(E) = 773 (1 — cos ¢) = W3 .
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The same diagram shows that the radius of the cone satisfies
rP+(R-h?=R> = r*=R>-(R—h)>=2Rh— I,

so that its volume is given by

mr’(R—h) _ m(2Rh— h*)(R — h)
3 B 3 ‘

It now follows that the volume of the cap is

2 _ K2 _ 2
27r;?h_7r(2Rh /;)(R h): %(3R—h).

O
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