Vector Valued Functions: Parametric Curves

Ryan C. Daileda

Trinity University
Calculus III

Introduction

In order to continue our study of integration, we need to be able to describe curves in \mathbb{R}^{2} and \mathbb{R}^{3}.

One convenient way to describe the points on a given curve is to specify x, y (and z) as functions of some parameter t.

It will also be convenient to encapsulate this parametric representation in a vector $\mathbf{r}(t)$.

This gives rise to single-variable vector valued functions, which we will now begin to study.

Vector Functions of One Variable

A single-variable vector function or parametric curve has the form

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle \quad \text { or } \quad \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle,
$$

where $x(t), y(t)$ and $z(t)$ are ordinary real-valued functions of one (real) variable.
We treat $\mathbf{r}(t)$ as a position vector whose tip traces out an oriented curve as t varies.

$$
t_{1}<t_{2}<t_{3}<t_{4}
$$

Examples

Example 1

Describe the graph of the vector function $\mathbf{r}(t)=\langle-t, 1+t, 2+3 t\rangle$.
Solution. If we write

$$
\mathbf{r}(t)=\langle 0,1,2\rangle+t\langle-1,1,3\rangle
$$

we recognize the vector expression for the line through $(0,1,2)$ with direction $\mathbf{v}=\langle-1,1,3\rangle$.

Example 2

Describe the graph of $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$.

Solution. We recognize $\mathbf{r}(t)$ as the position vector of the point with polar coordinates $r=1$ and $\theta=t$.

Therefore the tip of $\mathbf{r}(t)$ describes the unit circle oriented counterclockwise.

Example 3

Describe the graph of $\mathbf{r}(t)=\langle a \cos t, b \sin t\rangle$, where $a, b>0$.
Solution. We simply notice that $x=a \cos t, y=b \sin t$ satisfy the equation

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1 \Leftrightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

which is the equation of an ellipse with axes a and b.

The parameter t is not the polar coordinate angle θ, but the two are related by the equation

$$
\theta=\arctan \left(\frac{b}{a} \tan t\right) .
$$

Example 4

Describe the graph of $\mathbf{r}(t)=\langle 2+3 \cos t,-1+3 \sin t\rangle$.
Solution. We note that

$$
\mathbf{r}(t)=\underbrace{\langle 2,-1\rangle}_{\text {translation }}+\underbrace{\langle 3 \cos t, 3 \sin t\rangle}_{\text {circle }},
$$

so that the graph is a counterclockwise circle of radius 3 centered at $(2,-1)$.

The parameter t still represents the angle relative to the horizontal.

Example 5

Describe the graph of $\mathbf{r}(t)=\left\langle x_{0}+a \cos t, y_{0}+b \sin t\right\rangle$, where $a, b>0$.

Solution. As in the previous example, we have

$$
\mathbf{r}(t)=\underbrace{\left\langle x_{0}, y_{0}\right\rangle}_{\text {translation }}+\underbrace{\langle a \cos t, b \sin t\rangle}_{\text {ellipse }},
$$

so that the graph is a counterclockwise ellipse with axes a and b, "centered" at $\left(x_{0}, y_{0}\right)$.

Example 6

Describe the graph of $\mathbf{r}(t)=\langle t \cos t, t \sin t\rangle$.

Solution. In this case $\mathbf{r}(t)$ is the position vector of the point with polar coordinates $r=t$ and $\theta=t$.

So as t increases, $\mathbf{r}(t)$ rotates around the origin while its magnitude steadily grows.

This means that its graph will be a counterclockwise spiral.

Example 7

Describe the curve $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$.

Solution. Here $\mathbf{r}(t)$ is the position vector of a point in \mathbb{R}^{3} with cylindrical coordinates $r=1, \theta=t$ and $z=t$.
$\mathbf{r}(t)$ is therefore confined to the cylinder of radius 1 along the z-axis.

As t increases, $\theta=t$ rotates around the z-axis while $z=t$ steadily increases.

The graph is therefore a counterclockwise helix along the z-axis. See Maple diagram.

Example 8

Describe the graph of $\mathbf{r}(t)=\langle\cos t \sin 4 t, \sin t \sin 4 t, \cos 4 t\rangle$.

Solution. We recognize $\mathbf{r}(t)$ as the position vector of a point in \mathbb{R}^{3} with spherical coordinates $\rho=1, \theta=t$ and $\phi=4 t$.

The graph of $\mathbf{r}(t)$ is therefore confined to the unit sphere $x^{2}+y^{2}+z^{2}=1$.

As t increases, $\theta=t$ wraps steadily around the sphere, while $\phi=4 t$ moves between the north and south poles four times as fast.

See Maple diagram.

Example 9

Describe the graph of $\mathbf{r}(t)=\langle\cos 10 t \sin t, \sin 10 t \sin t, \cos t\rangle$.

Solution. This time, the spherical coordinates of $\mathbf{r}(t)$ are $\rho=1$, $\theta=10 t$ and $\phi=t$.

The graph again is confined to the unit sphere $x^{2}+y^{2}+z^{2}=1$.

But this time as t increases, $\phi=t$ moves steadily between the north and south poles, while $\theta=10 t$ wraps around the sphere ten times as fast.

The result is a "spherical tornado." See Maple diagram.

Example 10

Parametrize the line segment from $(1,3)$ to $(4,-2)$.
Solution. The direction of the line segment in question is

$$
\mathbf{v}=\langle 4,-2\rangle-\langle 1,3\rangle=\langle 3,-5\rangle .
$$

So the entire line through $(1,3)$ with direction \mathbf{v} is

$$
\mathbf{r}(t)=\langle 1,3\rangle+t\langle 3,-5\rangle=\langle 1+3 t, 3-5 t\rangle .
$$

Since $\mathbf{r}(0)=\langle 1,3\rangle$ while $\mathbf{r}(1)=\langle 4,-2\rangle$, we can describe the segment alone by requiring that

$$
0 \leq t \leq 1 \text {. }
$$

Example 11

Parametrize the portion of the circle $x^{2}+y^{2}=9$ that lies above the x-axis, oriented counterclockwise.

Solution. In polar coordinates this portion of the circle is described by $r=3$ and $0 \leq \theta \leq \pi / 2$.

We can therefore parametrize by taking $t=\theta$:

$$
\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t\rangle,
$$

for $0 \leq t \leq \pi / 2$.
Because θ increases in the counterclockwise direction, this will have the desired orintation.

