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Introduction

In order to continue our study of integration, we need to be able to
describe curves in R? and R3.

One convenient way to describe the points on a given curve is to
specify x, y (and z) as functions of some parameter t.

It will also be convenient to encapsulate this parametric
representation in a vector r(t).

This gives rise to single-variable vector valued functions, which we
will now begin to study.
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Vector Functions of One Variable

A single-variable vector function or parametric curve has the form

r(t) = (x(8),y(2)) or r(t) = (x(t),y(t), 2(t)),

where x(t), y(t) and z(t) are ordinary real-valued functions of one
(real) variable.

We treat r(t) as a position vector whose tip traces out an oriented
curve as t varies.

h<b<tz<ty
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SETES

Describe the graph of the vector function r(t) = (—t, 1+ t,2+ 3t).

Solution. If we write
r(t) = <07 1) 2> + t<_17 1) 3>)

we recognize the vector expression for the line through (0,1,2)
with direction v = (—1,1,3).
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Describe the graph of r(t) = (cos t,sin t).

Solution. We recognize r(t) as the position vector of the point
with polar coordinates r =1 and 6 = t.

Therefore the tip of r(t) de-
scribes the unit circle oriented
counterclockwise.
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Describe the graph of r(t) = (acost, bsin t), where a, b > 0.

Solution. We simply notice that x = acost, y = bsin t satisfy the

equation
2 2

X\ 2 V2 X y
— ) =1 & —+==1
(a) +(b) 32+b2 ’

which is the equation of an ellipse with axes a and b.

y
The parameter t is not the polar
coordinate angle #, but the two
r(t) X are related by the equation
b
\\// A = arctan (— tan t> .
a
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Example 4
Describe the graph of r(t) = (2 4+ 3cost, —1 + 3sin t).

Solution. We note that
r(t) = (2,—1) + (3cost,3sint),
—_— Y——
translation circle

so that the graph is a counterclockwise circle of radius 3 centered
at (2, —-1).

/7\ X The parameter t still represents
t

the angle relative to the horizon-
tal.
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Describe the graph of r(t) = (xo + acost, yo + bsin t), where
a,b>0.

Solution. As in the previous example, we have

r(t) = (xo,y0) + (acost,bsint),
—_— ———

translation ellipse

so that the graph is a counterclockwise ellipse with axes a and b,
“centered” at (xo, yp)-
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Example 6

Describe the graph of r(t) = (tcost, tsint).

Solution. In this case r(t) is the position vector of the point with
polar coordinates r = t and 6 = t.

So as t increases, r(t) rotates
around the origin while its mag-
nitude steadily grows.

1)

This means that its graph will
be a counterclockwise spiral.
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Describe the curve r(t) = (cos t,sin t, t).

Solution. Here r(t) is the position vector of a point in R® with
cylindrical coordinates r =1, 0 =t and z = t.

r(t) is therefore confined to the cylinder of radius 1 along the
z-axis.

As t increases, 6 = t rotates around the z-axis while z = t steadily
increases.

The graph is therefore a counterclockwise helix along the z-axis.
See Maple diagram.
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Example 8

Describe the graph of r(t) = (cos tsin4t,sin tsin 4t, cos 4t).

Solution. We recognize r(t) as the position vector of a point in R3
with spherical coordinates p =1, § =t and ¢ = 4t.

The graph of r(t) is therefore confined to the unit sphere
X2 +y?+22=1.

As t increases, # = t wraps steadily around the sphere, while
¢ = 4t moves between the north and south poles four times as fast.

See Maple diagram.
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Example 9
Describe the graph of r(t) = (cos 10t sin t,sin 10t sin t, cos t).

Solution. This time, the spherical coordinates of r(t) are p =1,
0 =10t and ¢ = t.

The graph again is confined to the unit sphere x> 4+ y? + 22 = 1.

But this time as t increases, ¢ = t moves steadily between the
north and south poles, while § = 10t wraps around the sphere ten
times as fast.

The result is a “spherical tornado.” See Maple diagram.
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Example 10

Parametrize the line segment from (1, 3) to (4, —2).

Solution. The direction of the line segment in question is

v=(4,-2)—(1,3) = (3, -5).

So the entire line through (1,3) with direction v is

r(t) = (1,3) + (3,-5) = | (1 +3¢t,3 - 5t) |

Since r(0) = (1,3) while r(1) = (4,—2), we can describe the
segment alone by requiring that

0<t<1y
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Parametrize the portion of the circle x? 4 y? = 9 that lies above
the x-axis, oriented counterclockwise.

Solution. In polar coordinates this portion of the circle is described
by r=3and 0 <0 < /2.

We can therefore parametrize by taking t = 6:

‘ r(t) = (3cost,3sint)

9

for|0 <t <m/2|

Because 0 increases in the counterclockwise direction, this will
have the desired orintation.
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