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Introduction

Today we will develop the theory of line integrals of functions.

This will allow us to integrate functions of several variables along
curves (rather than regions of the plane or space).

We will develop a number of line integrals, depending on how we
choose to measure the distance between points.

Our eventual goal is to study the integrals of 1-forms or vector
fields, which can be expressed and understood in terms of the
integrals developed here.
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Line Integrals

Suppose we are given an oriented curve C parametrized by

r(t) = (x(t),y(t)) with t € [a, b], and a function f(x, y) whose
domain includes C.

Goal. Use the “usual” procedure to integrate f along C.

We first subdivide [a, b]:

a=th<th <t < -+ <th1<th=b

This divides C into subarcs C; parametrized by r(t) with
t e [ti—1, ti].
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We choose sample points P € C; and construct the Riemann sum

> F(Pm(C)

where m(C;) is some geometric “measurement” of C;.
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We will consider three different choices for m(G;):

»r(t;)
) m(C,) = Ax; = X(t,') — X(t,'_l)

Ay. o m(Gj) = Ay; = y(ti) — y(ti-1)

) m(C,-) = As; = |r(t,-) — r(t;_1)|

Each choice of m leads to a different type of line integral.
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We define:

n

/f(x,y)dx: im " F(PH)Ax;,
C

At—0 “
i=1

Flx.y)dy = i F(P) Ay,
/C(X,y) y A;_fgol; (PH)Ay

f = i F(PH)As;,
JL i ds = g, S r(Pi)os

the line integrals of f along C with respect to x, y and arc length.
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Interpreting and Evaluating Line Integrals

The line integral / f(x,y) ds represents the signed area of the
C
“fence” between C and the graph of f. See Maple diagram.

The line integrals / f(x,y)dx and / f(x,y) dy are more easily
C C

understood in the context of vector fields.

To compute line integrals we observe that
Ax; = x(t;) — x(ti—1) = X' (t;) At;,
Ay; = y(t;) — y(ti-1) = y'(t) At
Ar; = |r(t;) — r(tiz1)| = ¥ (t)|At,

and that these approximations become more and more accurate as
At — 0.
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Since P = (x(t), y(t})) for some t* € [ti_1, ti],
/f(x,y) dc = lim Zf(P,-*)Ax,-
C .

b
:AhtrEOZf )x(t,)At,—/a F(x(), y(£)) X (£) d.

Similarly we have

b
/f(x,y)dyZ/ f(x(t),y(t))y'(t) dy,
C a

b
/Cf(x,y)ds:/a F(e(8)) ¥ ()] dt.




Remarks

@ These formulae can easily be remembered through the
following “substitution” rules:

x =x(t), y=y(t),
dx = X'(t) dt, dy = y'(t)dt,

ds = \/dx? + dy? = \/x'(t)? + y/(t)? dt

@ Strictly speaking, we require r'(t) # 0 throughout [a, b] so
that the parametrization doesn’t “double back” on C.

@ With this restriction on r'(t), one can show that [ is
independent of the parametrization of C chosen.

Daileda Line Integrals



Example

Evaluate / xy? dx, /xy2 dy and / xy? ds,where C is the
c C C

semicircle of radius 4 centered at the origin, from (0, —4) to (0, 4).

Solution.

We parametrize C using polar coordi-
nates:

r(t) = (4cost,4sint), —mw/2<t<m/2.
x(t)  y(1)
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We have

dx = X'(t)dt = — 4sin tdt,

dy = y'(t) dt = 4cos t dt,

ds = \/dx2 + dy? = V16 dt = 4 dt.
Therefore:

w/2
/ xy? dx = / (4 cos t)(4sint)*(—4sint) dt
C —7/2

w/2
= —256/ sindtcost dt = @,
—_—

—7/2 odd

/2
/ xy? dy = / (4 cos t)(4sin t)?(4 cos t) dt
C —7/2

/2
= 256/ sin® t cos? t dt
—_—

—m/2 even
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w/2 1 _
_ 12/ 1 cos2t1+<;os2tdt
0

T2 o1 4
/ 1 — cos? 2tdt—128/ 1—%&
0

0
w/2
) -z

64/ 1 cosatdt—64 |t M4t
0 4 0

w/2
/xy2 ds = / (4 cos t)(4sin t)? 4 dt
c

—7/2

even

™2 512
0 3

sindt

w/2
:512/ sin® tcos t dt = 512
0

O
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@ We have:

b
/ds: / [¥'(t)| dt = Arc length of C,
C a

/Cdx: /abx/(t) dt = x(1)

[av= [ vyar=yo

@ We define

b
= x(end) — x(beg.),

a

b
a

= y(end) — y(beg.).

/C P(x,y)dx + Q(x,y)dy = /C P(x,y)dx + /C Q(x,y)dy.
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Remarks (Cont.)

@ Given an oriented curve C, we let —C denote the same path,
with the opposite orientation. We have:

/_C f(x,y)dx = —/Cf(x,y)dx,
/_Cf(x,y)dyz —/Cf(xvy)dy,

/_ _fxy)ds = /C f(x,y) ds.

o If C is made up of successive pieces Ci, (p, ..., we write
C=C+G+---, and we have

Ci+ G+ G G
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SETES

Evaluate / xy dx 4+ (x — y) dy, where C consists of the line
c
segments connecting (0,0) to (2,0) to (3,2).

Solution. We integrate on each segment separately, then add the
results.

For convenience we set w = xy dx + (x — y) dy.

On the first segment C; we have y =0 and dy = 0dt. Thus

/w:/ xy dx+(x—y) dy =0.
oo ¥
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We parametrize the second segment C, in the usual way:

r(t) =(2,0) +t(3—2,2—-0) = (2+t,2t), 0 <t <1

Thus x =2+ t, y = 2t, dx = dt and dy = 2 dt, so that

/w:/ xydx+(x—y)dy:/1(2+t)(2t)+(2—t)2dt
G G 0

1
2 17

=/ 202+ 2t +A4dt == +14+4=".

0 3 3

Therefore

/ / / / 17 17
w = w = w + w=0+—=|—|
C C+G G G 3 3
O
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Let P = (—v/2,—+/2) and @ = (v/2,v/2). Compare / x dy and

C
/ x dy, where C and C’ are the paths from P to Q shown below.

Solution. We parametrize — C using po-
lar coordinates:

r(t) = (2cost,2sint), w/4 <t <5r/4.

P
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This yields x = 2cos t and dy = 2cos t dt, so that

57 /4
/xdy: —/ xdy = —/ (2cos t)(2cos t) dt
C —-C w/4

57/4 .
:_4/ 1—|—c052tdt: 5 H_sm2t
w/4 2 2

2]

57 /4
w/4 )
On the other hand, C’ is given by

r(t) = (—V2,—V2) + t{(vV2 — (—V2)vV2 — (—V2))
=V2(—1+2t,—-1+2t), 0<t<1,

so that x = v/2(—1 + 2t) and dy = 2v/2t.
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Thus .
/xdyZ/ V2(—1+2t)2v2dt
c’ 0

1
:4/ —1+2tdt:4<—t—i—t2
0

= 4(-1+1)=[0].

)

Moral. When integrating between two points, fC depends on the
choice of path (in general).
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Line Integrals in 3D

Given a function f(x, y,z) and an oriented curve C parametrized
by r(t) = (x(t),y(t),z(t)) with a < t < b, the analogous Riemann
sum procedure yields

b
/f(x,y,z)dx:/ F(x(2), y (1), 2(£)) ¥ (t) dt,
C a
b
/f(x,y,z)dy:/ F(x(), y(2), 2(£)) ¥/ (£) d,
C a
/f(x,y,z)dz
C

/ f(x,y,z)ds
C
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b
/a F(x(0),y(2), 2(1)) 2'(2) dt,

b
/ F(r(t)) ¥ (1) dt.



