Vector Fields

Ryan C. Daileda

Trinity University

Calculus III

Introduction

Today we will introduce another kind of vector-valued function, namely vector fields.

Vector fields and their line integrals are important in applications.

A vector field is simply a "repackaged" differential 1-form, and this is where we will begin.

Differential 1-Forms

Definition

An expression of the form

$$
\omega=P(x, y) d x+Q(x, y) d y=P d x+Q d y
$$

is called a (differential) 1-form.

The domain of a 1-form ω is the intersection of the domains of P and Q.

We say that ω is continuous, differentiable, etc. provided P and Q are both continuous, differentiable, etc.

From now on we assume ω is always C^{1}, i.e. the first order partial derivatives of P and Q exist and are continuous.

Integration of 1-Forms

Differential 1-forms associate numbers to oriented curves.
Specifically, every 1-form ω with domain D yields a linear function
$E_{\omega}:\{$ oriented curves in $D\} \rightarrow \mathbb{R}$,
defined by $E_{\omega}(C)=\int_{C} \omega$.
Suppose $\omega=P d x+Q d y$ and C is given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ with $a \leq t \leq b$. Then by definition

$$
\begin{aligned}
\int_{C} \omega & =\int_{a}^{b} P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t) d t \\
& =\int_{a}^{b} \underbrace{\langle P, R\rangle}_{\mathbf{F}} \cdot \underbrace{\mathbf{r}^{\prime}(t) d t}_{d \mathbf{r}}=\int_{C} \mathbf{F} \cdot d \mathbf{r}
\end{aligned}
$$

The vector-valued function $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=P \mathbf{i}+Q \mathbf{j}$ is called a vector field.

We visualize a vector field \mathbf{F} by drawing the vector $\mathbf{F}(x, y)$ with its tail at (x, y).

$\mathbf{F}=\langle y,-x\rangle$

$$
\mathbf{F}=\langle y, x\rangle
$$

$\mathbf{F}=\langle x, y\rangle$

$\mathbf{F}=\langle x-y, x y\rangle$

$\mathbf{F}=\langle x, x-y\rangle$

$\mathbf{F}=\left\langle x^{2}+x-y^{2}, 2 x y+y\right\rangle$

Vector Fields

Example

Example 1

If $\mathbf{F}=\langle x-y, x y\rangle$, compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,-2)$, counterclockwise.

Solution.

We parametrize C using polar coordinates:

$$
\begin{aligned}
& \quad \mathbf{r}(t)=\langle 2 \cos t, 2 \sin t\rangle, \\
& \text { with } 0 \leq t \leq 3 \pi / 2
\end{aligned}
$$

We have $x=2 \cos t, y=2 \sin t$ and $\mathbf{r}^{\prime}(t)=\langle-2 \sin t, 2 \cos t\rangle$, so that

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& \quad=\int_{0}^{3 \pi / 2}\langle 2 \cos t-2 \sin t,(2 \cos t)(2 \sin t)\rangle \cdot\langle-2 \sin t, 2 \cos t\rangle d t \\
& \quad=\int_{0}^{3 \pi / 2}-4 \sin t \cos t+4 \sin ^{2} t+8 \cos ^{2} t \sin t d t \\
& \quad=\int_{0}^{3 \pi / 2}-4 \sin t \cos t+2(1-\cos 2 t)+8 \cos ^{2} t \sin t d t \\
& \quad=-2 \sin ^{2} t+2 t-\sin 2 t-\left.\frac{8}{3} \cos ^{3} t\right|_{0} ^{3 \pi / 2} \\
& \quad=-2+3 \pi+\frac{8}{3}=3 \pi+\frac{2}{3} .
\end{aligned}
$$

Interpreting Line Integrals

Given a vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ and a curve C parametrized by $\mathbf{r}(t)$ with $a \leq t \leq b$, we see that

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{\mathbf{F} \cdot \mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}\left|\mathbf{r}^{\prime}\right| d t \\
& =\int_{C} \operatorname{proj}_{\mathbf{T}}(\mathbf{F}) d s
\end{aligned}
$$

where $\mathbf{T}(t)=\mathbf{r}^{\prime}(t) /\left|\mathbf{r}^{\prime}(t)\right|$ is the unit tangent vector.
So $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is a net measurement of the tendency of $\mathbf{F}(x, y)$ to "agree with" motion along C.

Example

Example 2

For each curve C shown, choose an orientation and determine if $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is positive, negative or zero.

A Physical Interpretation

If $\mathbf{F}(x, y)$ represents a force at each point (e.g. gravity), and $\mathbf{r}(t)$ is the position of a particle at time t, subject to \mathbf{F}, then

$$
\mathbf{F}\left(\mathbf{r}\left(t_{i}\right)\right) \cdot \mathbf{r}^{\prime}\left(t_{i}\right) \Delta t_{i} \approx \mathbf{F}\left(\mathbf{r}\left(t_{i}\right)\right) \cdot \Delta \mathbf{r}_{i}
$$

which is the work done by $\mathbf{F}\left(\mathbf{r}\left(t_{i}\right)\right)$ done through the displacement $\Delta \mathbf{r}_{i}$.

So at the level of Riemann sums we have

$$
\sum_{i=1}^{n} \mathbf{F}\left(\mathbf{r}\left(t_{i}\right)\right) \cdot \mathbf{r}^{\prime}\left(t_{i}\right) \Delta t_{i} \approx \sum_{i=1}^{n} \mathbf{F}\left(\mathbf{r}\left(t_{i}\right)\right) \cdot \Delta \mathbf{r}_{i}
$$

the RHS approximating the total work done by F as we move along $\mathbf{r}(t)$.

This approximation improves indefinitely as $\Delta t \rightarrow 0$, so that

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\text { Total work done by } \mathbf{F} \text { along } C .
$$

This suggests that we may interpret the general line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ as a measurement of the "energy" of C, relative to \mathbf{F}.

Put another way, if $\omega=P d x+Q d y$ is the 1-form corresponding to $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$, then the "evaluation" $E_{\omega}(C)$ represents the energy of C relative to ω.

A bit more specifically, suppose $\mathbf{F}(x, y)$ is a force field and $\mathbf{r}(t)$ represents the motion of a particle subject only to the force \mathbf{F}.

Newton's Second Law gives $\mathbf{F}=m \mathbf{r}^{\prime \prime}$ so that

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{a}^{b} m \mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t) d t=\frac{m}{2} \int_{a}^{b} \frac{d}{d t}\left(\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime}(t)\right) d t \\
& =\frac{m}{2}\left(\left|\mathbf{r}^{\prime}(b)\right|^{2}-\left|\mathbf{r}^{\prime}(a)\right|^{2}\right)=\frac{m v_{f}^{2}}{2}-\frac{m v_{i}^{2}}{2}=\Delta E_{K}
\end{aligned}
$$

is the change in the kinetic energy of the particle between the initial and terminal points of C.

Conservative Vector Fields

Definition

We call the vector field $\mathbf{F}(x, y)$ conservative if $\mathbf{F}=\nabla f$ for some function $f(x, y)$. In this case we call f the potential of \mathbf{F}.

Warning. In physics, the function $-f$ is called the potential of \mathbf{F}. We will see why shortly.

Example. The vector field $\mathbf{F}=y \mathbf{i}+x \mathbf{j}$ is conservative since

$$
\nabla(x y)=y \mathbf{i}+x \mathbf{j}=\mathbf{F}
$$

Its potential function is $f(x, y)=x y$.

Integration of Conservative Fields

Suppose that $\mathbf{F}(x, y)$ is conservative with potential $f(x, y)$.
Then on any curve C we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} f_{x} d x+f_{y} d y \\
& =\int_{a}^{b} \frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} d t \\
& =\int_{a}^{b} \frac{d}{d t} f(\mathbf{r}(t)) d t=\left.f(\mathbf{r}(t))\right|_{a} ^{b} \\
& =f(\text { end of } C)-f(\text { beg. of } C) .
\end{aligned}
$$

This is the Fundamental Theorem of Calculus for Line Integrals

FTOC for Line Integrals

Theorem 1 (FTOC for Line Integrals)

If $\mathbf{F}(x, y)$ is a conservative vector field with domain D and potential $f(x, y)$, then for any curve C in D from A to B we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(B)-f(A)
$$

Consequently:

- $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path independent; it depends only on the endpoints of C.
- $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any closed curve C (when $\left.A=B\right)$.

Exact 1-Forms

Given a function $f(x, y)$, its differential is

$$
d f=f_{x} d x+f_{y} d y
$$

If $\omega=P d x+Q d y$ and $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is the corresponding vector field, then

$$
\mathbf{F}=\nabla f \Leftrightarrow \omega=d f
$$

In this case we say that ω is exact, and the FTOC for line integrals becomes

$$
\int_{C} d f=f(\text { end of } C)-f(\text { beg. of } C)
$$

Examples

Example 3

Evaluate $\int_{C}(x+2 x y) d x+x^{2} d y$, where C is the curve consisting of the line segments from $(0,0)$ to $(2,1)$ to $(4,3)$ to $(5,0)$.

Solution. Notice that if $f(x, y)=x^{2} y+\frac{x^{2}}{2}$, then

$$
d f=(2 x y+x) d x+x^{2} d y
$$

so that FTOC implies

$$
\int_{C}(x+2 x y) d x+x^{2} d y=\int_{C} d f=f(5,0)-f(0,0)=\frac{25}{2}
$$

Example 4

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=x \mathbf{i}+(y+2) \mathbf{j}$ and C is given by $\mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle, 0 \leq t \leq 2 \pi$.

Solution. Notice that

$$
\nabla(\underbrace{\frac{x^{2}}{2}+\frac{y^{2}}{2}+2 y}_{f(x, y)})=x \mathbf{i}+(y+2) \mathbf{j}=\mathbf{F} .
$$

Therefore, by FTOC,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(2 \pi))-f(\mathbf{r}(0))=f(2 \pi, 0)-f(0,0)=2 \pi^{2} .
$$

Remarks

$$
\text { Let } \mathbf{F}=P \mathbf{i}+Q \mathbf{j} \text { and } \omega=P d x+Q d y .
$$

Given $f(x, y)$, we can view ∇f and $d f$ as different versions of the (total) derivative of f.

Conversely, if \mathbf{F} / ω is conservative/exact, we can view the potential $f(x, y)$ as the antiderivative.

FTOC then says: if \mathbf{F} / ω has an antiderivative $f(x, y)$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \omega=\left.f(x, y)\right|_{\text {beg. }} ^{\text {end }}
$$

which is an exact analogue of the single variable FTOC.

Warning!

Unlike the single variable FTOC, however, not every vector field/1-form has an antiderivative!

Example 5

Use the graph of $\mathbf{F}(x, y)=y \mathbf{i}-x \mathbf{j}$ to show that it is not conservative.

Solution. Here's the graph of F:

If C is any clockwise circle centered at the origin, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}>0
$$

Conservation of Energy

Suppose that $\mathbf{F}=\nabla f$ is a conservative force field. If a particle travels from A to B along a curve C subject only to F, we have

$$
E_{K}(B)-E_{K}(A)=\Delta E_{K}=\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(B)-f(A)
$$

or

$$
E_{K}(B)-f(B)=E_{K}(A)-f(A)
$$

If we define the potential energy to be $E_{P}=-f$, this becomes

$$
E_{K}(B)+E_{P}(B)=E_{K}(A)+E_{P}(A)
$$

which is the law of conservation of energy.

Forms and Fields in \mathbb{R}^{3}

A 1-form in 3 variables looks like
$\omega=P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z=P d x+Q d y+R d z$, which corresponds to the 3D vector field

$$
\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k} .
$$

We say that \mathbf{F} / ω is conservative/exact provided

$$
\mathbf{F}=\nabla f \quad \text { or } \omega=d f=f_{x} d x+f_{y} d y+f_{z} d z
$$

The 3D analogue of the FTOC for line integrals also holds.

Example

Example 6

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=(y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k}$ and C is the line segment from $(1,0,0)$ to $(3,4,2)$.

Solution. Observe that

$$
\nabla(\underbrace{x y+x z+y z}_{f})=(y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k} .
$$

Therefore

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(3,4,2)-f(1,0,0)=26
$$

