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Introduction

Recall that if F = P i+ Qj is a conservative vector field and C is a
closed curve (loop), then

∫

C

F · dr = 0.

Furthermore, if the domain D of F is simply connected (has no
“holes”), then F is conservative if and only if

∂Q

∂x
− ∂P

∂y
= 0.

Green’s theorem provides an explanation of this phenomenon by
giving a direct relationship between the integrals of F and
∂Q

∂x
− ∂P

∂y
, for arbitrary F.
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Motivating Example

Consider

∫

C

P dx + Q dy , where C is the boundary of the unit

square [0, 1] × [0, 1], travelled counterclockwise:

D

1

1

x

y
C

Let L,R ,T ,B denote the left, right, top and bottom edges of C ,
respectively.
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On R and L we have dx = 0 so that

∫

R

P dx + Q dy =

∫

R

Q dy =

∫ 1

0

Q(1, y) dy ,

∫

L

P dx + Q dy =

∫

L

Q dy = −
∫ 1

0

Q(0, y) dy .

Thus

∫

L+R

P dx + Q dy =

∫ 1

0

Q(1, y)− Q(0, y) dy =

∫ 1

0

Q(x , y)

∣

∣

∣

∣

x=1

x=0

dy

=

∫ 1

0

∫ 1

0

Qx(x , y) dx dy =

∫∫

D

∂Q

∂x
dA.
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In an entirely similar fashion one can also show that

∫

B+T

P dx + Q dy =

∫

B+T

P dx = −
∫ 1

0

P(x , 1)− P(x , 0) dx

= −
∫ 1

0

P(x , y)

∣

∣

∣

∣

y=1

y=0

dx = −
∫ 1

0

∫ 1

0

Py (x , y) dy dx

= −
∫∫

D

∂P

∂y
dA.

Therefore
∫

C

P dx + Q dy =

∫

B+R+T+L

P dx + Q dy =

∫∫

D

∂Q

∂x
− ∂P

∂y
dA.

This is a particular instance of Green’s Theorem.
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Preliminary Definitions

Definition

A curve C is called closed if its initial and terminal points are the
same (i.e. C is a loop). We say that a closed curve is simple if it
never crosses through itself.

C C

Simple, closed Closed, not simple
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Definition

Let C be a simple closed curve enclosing a region D ⊂ R
2. We say

that C is positively oriented if D is always to the left as you travel
along C .

C

D

Positive orientation

Finally, recall that a region D ⊂ R
2 is called simply connected if it

has no “holes.”
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Green’s Theorem

We can now state our main result of the day.

Theorem 1 (Green’s Theorem)

Let D ⊂ R
2 be a simply connected region with positively oriented

simple closed boundary curve ∂D. If P ,Q ∈ C 1(D), then

∫

∂D
P dx + Q dy =

∫∫

D

∂Q

∂x
− ∂P

∂y
dA.

C

D

∂D

The setup for Green’s Theorem.

Remark. Green’s Theorem
generalizes the fact that
∫

C
F · dr = 0 for a conservative

field F and a closed curve C .
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Remark

Recall that if F = P i+ Qj+ Rk,then

curlF = ∇× F =

∣

∣

∣

∣

∣

∣

i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣

∣

∣

∣

∣

∣

.

If we view F(x , y) = P i+ Qj as having zero z-component, then
this becomes

curl(F) =

(

∂Q

∂x
− ∂P

∂y

)

k.

If we drop the k, we can restate Green’s theorem in vector form as

∫

∂D
F · dr =

∫∫

D

curl(F) dA.
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Examples

Example 1

Evaluate

∫

C

xy2 dx +2x2y dy , where C is the triangle with vertices

(0, 0), (2, 2), (2, 4), oriented positively.

Solution.

D

∂D=C

2

2

4

x

y

We apply Green’s theorem.

The region D is Type I, with
“bottom” y = x and “top”
y = 2x , for 0 ≤ x ≤ 2.
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Thus

∫

C

xy2 dx + 2x2y dy =

∫ 2

0

∫ 2x

x

∂

∂x
(2x2y)− ∂

∂y
(xy2) dy dx

=

∫ 2

0

∫ 2x

x

4xy − 2xy dy dx =

∫ 2

0

∫ 2x

x

2xy dy dx

=

∫ 2

0

xy2
∣

∣

∣

∣

y=2x

y=x

dx =

∫ 2

0

3x3 dx

=
3x4

4

∣

∣

∣

∣

2

0

= 12 .
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Example 2

Evaluate

∫

C

xe−2x dx + (x4 + 2x2y2) dy , where C is the boundary

of the semi-annulus shown below.

Solution.

∂D=C

1
x

y

We apply Green’s theorem.

Note that the region D enclosed
by C has polar description 1 ≤
r ≤ 2, π/4 ≤ θ ≤ 5π/4.
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Therefore
∫

C

xe−2x dx+(x4 + 2x2y2) dy =

∫∫

D

∂

∂x
(x4 + 2x2y2)− ∂

∂y
(xe−2x ) dA

=

∫∫

D

4x3 + 4xy2 dA =

∫ 5π/4

π/4

∫ 2

1

4r4 cos θ dr dθ

= 4

∫ 5π/4

π/4
cos θ dθ ×

∫ 2

1

r4 dr = 4

(

sin θ

∣

∣

∣

∣

5π/4

π/4

)(

r5

5

∣

∣

∣

∣

2

1

)

= 4
(

−
√
2
)

(

25 − 1

5

)

= −124
√
2

5
.
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Example 3

Evaluate

∫

C

F · dr, where F =
−y i+ x j

x2 + y2
and C is any positively

oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0, 0) so Green’s theorem does
not apply.

x

y
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Example 4

Evaluate

∫

C

F · dr, where F =
−y i+ x j

x2 + y2
and C is any positively

oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0, 0) so Green’s theorem does
not apply.

x

y
Let C ′ denote a small circle of
radius a centered at the origin
and enclosed by C .

Introduce line segments along
the x-axis and split the region
between C and C ′ in two.
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Example 5

Evaluate

∫

C

F · dr, where F =
−y i+ x j

x2 + y2
and C is any positively

oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0, 0) so Green’s theorem does
not apply.

x

y

C

C'

Let C ′ denote a small circle of
radius a centered at the origin
and enclosed by C .

Introduce line segments along
the x-axis and split the region
between C and C ′ in two.
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Example 6

Evaluate

∫

C

F · dr, where F =
−y i+ x j

x2 + y2
and C is any positively

oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0, 0) so Green’s theorem does
not apply.

x

y

C

C'

Let C ′ denote a small circle of
radius a centered at the origin
and enclosed by C .

Introduce line segments along
the x-axis and split the region
between C and C ′ in two.
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Example 7

Evaluate

∫

C

F · dr, where F =
−y i+ x j

x2 + y2
and C is any positively

oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0, 0) so Green’s theorem does
not apply.

x

y
Let C ′ denote a small circle of
radius a centered at the origin
and enclosed by C .

Introduce line segments along
the x-axis and split the region
between C and C ′ in two.
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Because the integrals along the line segments cancel out we have

∫

C+C ′

F · dr =
∫

∂D1+∂D2

F · dr =
∫

∂D1

F · dr+
∫

∂D2

F · dr.

We can apply Green’s theorem on D1 and D2. Since curl(F) = 0
(previous lecture) we have

∫

∂D1

F · dr+
∫

∂D2

F · dr =
∫∫

D1

0 dA +

∫∫

D2

0 dA = 0.

It now follows that
∫

C

F · r =
∫

−C ′

F · r.
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We parametrize −C ′ in the usual way:

r(t) = 〈a cos t, a sin t〉 ⇒ r′(t) = 〈−a sin t, a cos t〉,

with 0 ≤ t ≤ 2π. Thus

∫

−C ′

F · dr =
∫ 2π

0

−a sin t i+ a cos t j

a2 cos2 t + a2 sin2 t
· 〈−a sin t, a cos t〉 dt

=

∫ 2π

0

a2

a2
dt = 2π .

Daileda Green’s Theorem



Remarks

Using a subdivision argument as in the preceding example, one can
show that Green’s theorem applies to a multiply connected region
D provided:

1. The boundary ∂D consists of multiple simple closed curves.

2. Each piece of ∂D is positively oriented relative to D.

D

∫

∂D
P dx+Q dy =

∫∫

D

∂Q

∂x
−∂P

∂y
dA

for P ,Q ∈ C 1(D).
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Remarks (Cont.)

Suppose D is a region to which Green’s theorem applies. Then

Area(D) =

∫∫

D

dA =
1

2

∫∫

D

∂

∂x
(x)− ∂

∂y
(−y) dA

=
1

2

∫

∂D
−y dx + x dy .

That is, we can compute the area of D by integrating
ω = 1

2
(−y dx + x dy) around ∂D.

This observation provides the theoretical basis behind what’s
known as a planimeter, which can compute the area of a plane
region by tracing its boundary.
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Example 8

Suppose we are given n vertices of a polygon P : (x1, y1),
(x2, y2), . . ., (xn, yn). Use Green’s theorem to derive a formula for
the area of P only in terms of the coordinates of its vertices.

Solution. One can show (HW) that if L is the line segment from
(a, b) to (c , d), then

∫

L

−y dx + x dy = ad − bc =

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

.

Assuming that ∂P is oriented positively, our area formula above
tells us that

Area(P) =
1

2

∫

∂P
−y dx + x dy .
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Since the boundary of P consists of the line segments between the
(xi , yi ) we find that

1

2

∫

∂P
−y dx + x dy =

1

2

n
∑

i=1

∣

∣

∣

∣

xi yi
xi+1 yi+1

∣

∣

∣

∣

,

where we define (xn+1, yn+1) = (x1, y1).

Example 9

Compute the area of the polygon with vertices (0, 0), (4, 3), (3, 4),
(−1, 3), (−2, 1) and (1, 2).

Solution. We use the preceding example:

Area(P) =
1

2

(
∣

∣

∣

∣

0 0
4 3

∣

∣

∣

∣

+

∣

∣

∣

∣

4 3
3 4

∣

∣

∣

∣

+

∣

∣

∣

∣

3 4
−1 3

∣

∣

∣

∣

+

∣

∣

∣

∣

−1 3
−2 1

∣

∣

∣

∣

+

∣

∣

∣

∣

−2 1
1 2

∣

∣

∣

∣

+

∣

∣

∣

∣

1 2
0 0

∣

∣

∣

∣

)
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=
1

2
((0− 0) + (16 − 9) + (9 + 4) + (−1 + 6) + (−4− 1) + (0− 0))

=
1

2
(7 + 13 + 5− 5) = 10 .

Have a great Thanksgiving break!!!
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