Green's Theorem

Ryan C. Daileda

Trinity University

Calculus III

Introduction

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is a conservative vector field and C is a closed curve (loop), then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

Furthermore, if the domain D of \mathbf{F} is simply connected (has no "holes"), then \mathbf{F} is conservative if and only if

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0
$$

Green's theorem provides an explanation of this phenomenon by giving a direct relationship between the integrals of \mathbf{F} and $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$, for arbitrary \mathbf{F}.

Motivating Example

Consider $\int_{C} P d x+Q d y$, where C is the boundary of the unit square $[0,1] \times[0,1]$, travelled counterclockwise:

Let L, R, T, B denote the left, right, top and bottom edges of C, respectively.

On R and L we have $d x=0$ so that

$$
\begin{aligned}
\int_{R} P d x+Q d y & =\int_{R} Q d y=\int_{0}^{1} Q(1, y) d y \\
\int_{L} P d x+Q d y & =\int_{L} Q d y=-\int_{0}^{1} Q(0, y) d y
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{L+R} P d x+Q d y & =\int_{0}^{1} Q(1, y)-Q(0, y) d y=\left.\int_{0}^{1} Q(x, y)\right|_{x=0} ^{x=1} d y \\
& =\int_{0}^{1} \int_{0}^{1} Q_{x}(x, y) d x d y=\iint_{D} \frac{\partial Q}{\partial x} d A
\end{aligned}
$$

In an entirely similar fashion one can also show that

$$
\begin{aligned}
\int_{B+T} P d x+Q d y & =\int_{B+T} P d x=-\int_{0}^{1} P(x, 1)-P(x, 0) d x \\
& =-\left.\int_{0}^{1} P(x, y)\right|_{y=0} ^{y=1} d x=-\int_{0}^{1} \int_{0}^{1} P_{y}(x, y) d y d x \\
& =-\iint_{D} \frac{\partial P}{\partial y} d A
\end{aligned}
$$

Therefore

$$
\int_{C} P d x+Q d y=\int_{B+R+T+L} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

This is a particular instance of Green's Theorem.

Preliminary Definitions

Definition

A curve C is called closed if its initial and terminal points are the same (i.e. C is a loop). We say that a closed curve is simple if it never crosses through itself.

Simple, closed

Closed, not simple

Definition

Let C be a simple closed curve enclosing a region $D \subset \mathbb{R}^{2}$. We say that C is positively oriented if D is always to the left as you travel along C.

Positive orientation
Finally, recall that a region $D \subset \mathbb{R}^{2}$ is called simply connected if it has no "holes."

Green's Theorem

We can now state our main result of the day.

Theorem 1 (Green's Theorem)

Let $D \subset \mathbb{R}^{2}$ be a simply connected region with positively oriented simple closed boundary curve ∂D. If $P, Q \in C^{1}(D)$, then

$$
\int_{\partial D} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A
$$

The setup for Green's Theorem.

Remark. Green's Theorem generalizes the fact that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for a conservative field \mathbf{F} and a closed curve C.

Remark

Recall that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$, then

$$
\text { curl } \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
P & Q & R
\end{array}\right| .
$$

If we view $\mathbf{F}(x, y)=P \mathbf{i}+Q \mathbf{j}$ as having zero z-component, then this becomes

$$
\operatorname{curl}(\mathbf{F})=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k} .
$$

If we drop the \mathbf{k}, we can restate Green's theorem in vector form as

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \operatorname{curl}(\mathbf{F}) d A
$$

Examples

Example 1

Evaluate $\int_{C} x y^{2} d x+2 x^{2} y d y$, where C is the triangle with vertices $(0,0),(2,2),(2,4)$, oriented positively.

Solution.

We apply Green's theorem.
The region D is Type I, with "bottom" $y=x$ and "top" $y=2 x$, for $0 \leq x \leq 2$.

Thus

$$
\begin{aligned}
\int_{C} x y^{2} d x+2 x^{2} y d y & =\int_{0}^{2} \int_{x}^{2 x} \frac{\partial}{\partial x}\left(2 x^{2} y\right)-\frac{\partial}{\partial y}\left(x y^{2}\right) d y d x \\
& =\int_{0}^{2} \int_{x}^{2 x} 4 x y-2 x y d y d x=\int_{0}^{2} \int_{x}^{2 x} 2 x y d y d x \\
& =\left.\int_{0}^{2} x y^{2}\right|_{y=x} ^{y=2 x} d x=\int_{0}^{2} 3 x^{3} d x \\
& =\left.\frac{3 x^{4}}{4}\right|_{0} ^{2}=12
\end{aligned}
$$

Example 2

Evaluate $\int_{C} x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y$, where C is the boundary of the semi-annulus shown below.

Solution.

We apply Green's theorem.
Note that the region D enclosed by C has polar description $1 \leq$ $r \leq 2, \pi / 4 \leq \theta \leq 5 \pi / 4$.

Therefore

$$
\begin{aligned}
& \int_{C} x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y=\iint_{D} \frac{\partial}{\partial x}\left(x^{4}+2 x^{2} y^{2}\right)-\frac{\partial}{\partial y}\left(x e^{-2 x}\right) d A \\
&=\iint_{D} 4 x^{3}+4 x y^{2} d A=\int_{\pi / 4}^{5 \pi / 4} \int_{1}^{2} 4 r^{4} \cos \theta d r d \theta \\
&=4 \int_{\pi / 4}^{5 \pi / 4} \cos \theta d \theta \times \int_{1}^{2} r^{4} d r=4\left(\left.\sin \theta\right|_{\pi / 4} ^{5 \pi / 4}\right)\left(\left.\frac{r^{5}}{5}\right|_{1} ^{2}\right) \\
&=4(-\sqrt{2})\left(\frac{2^{5}-1}{5}\right)=-\frac{124 \sqrt{2}}{5} .
\end{aligned}
$$

Example 3

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$ and C is any positively oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected, the domain of \mathbf{F} does not include $(0,0)$ so Green's theorem does not apply.

Example 4

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$ and C is any positively oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected, the domain of \mathbf{F} does not include $(0,0)$ so Green's theorem does not apply.

Let C^{\prime} denote a small circle of radius a centered at the origin and enclosed by C.

Introduce line segments along the x-axis and split the region between C and C^{\prime} in two.

Example 5

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$ and C is any positively oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected, the domain of \mathbf{F} does not include $(0,0)$ so Green's theorem does not apply.

Let C^{\prime} denote a small circle of radius a centered at the origin and enclosed by C.

Introduce line segments along the x-axis and split the region between C and C^{\prime} in two.

Example 6

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$ and C is any positively oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected, the domain of \mathbf{F} does not include $(0,0)$ so Green's theorem does not apply.

Let C^{\prime} denote a small circle of radius a centered at the origin and enclosed by C.

Introduce line segments along the x-axis and split the region between C and C^{\prime} in two.

Example 7

Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$ and C is any positively oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected, the domain of \mathbf{F} does not include $(0,0)$ so Green's theorem does not apply.

Let C^{\prime} denote a small circle of radius a centered at the origin and enclosed by C.

Introduce line segments along the x-axis and split the region between C and C^{\prime} in two.

Because the integrals along the line segments cancel out we have

$$
\int_{C+C^{\prime}} \mathbf{F} \cdot d \mathbf{r}=\int_{\partial D_{1}+\partial D_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{\partial D_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{\partial D_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

We can apply Green's theorem on D_{1} and D_{2}. Since curl($\left.\mathbf{F}\right)=0$ (previous lecture) we have

$$
\int_{\partial D_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{\partial D_{2}} \mathbf{F} \cdot d \mathbf{r}=\iint_{D_{1}} 0 d A+\iint_{D_{2}} 0 d A=0
$$

It now follows that

$$
\int_{C} \mathbf{F} \cdot \mathbf{r}=\int_{-C^{\prime}} \mathbf{F} \cdot \mathbf{r}
$$

We parametrize $-C^{\prime}$ in the usual way:

$$
\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle \Rightarrow \mathbf{r}^{\prime}(t)=\langle-a \sin t, a \cos t\rangle
$$

with $0 \leq t \leq 2 \pi$. Thus

$$
\begin{aligned}
\int_{-C^{\prime}} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi} \frac{-a \sin t \mathbf{i}+a \cos t \mathbf{j}}{a^{2} \cos ^{2} t+a^{2} \sin ^{2} t} \cdot\langle-a \sin t, a \cos t\rangle d t \\
& =\int_{0}^{2 \pi} \frac{a^{2}}{a^{2}} d t=2 \pi
\end{aligned}
$$

Remarks

Using a subdivision argument as in the preceding example, one can show that Green's theorem applies to a multiply connected region D provided:

1. The boundary ∂D consists of multiple simple closed curves.
2. Each piece of ∂D is positively oriented relative to D.

$$
\begin{aligned}
& \int_{\partial D} P d x+Q d y=\iint_{D} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d A \\
& \text { for } P, Q \in C^{1}(D)
\end{aligned}
$$

Remarks (Cont.)

Suppose D is a region to which Green's theorem applies. Then

$$
\begin{aligned}
\operatorname{Area}(D) & =\iint_{D} d A=\frac{1}{2} \iint_{D} \frac{\partial}{\partial x}(x)-\frac{\partial}{\partial y}(-y) d A \\
& =\frac{1}{2} \int_{\partial D}-y d x+x d y
\end{aligned}
$$

That is, we can compute the area of D by integrating $\omega=\frac{1}{2}(-y d x+x d y)$ around ∂D.

This observation provides the theoretical basis behind what's known as a planimeter, which can compute the area of a plane region by tracing its boundary.

Example 8

Suppose we are given n vertices of a polygon $P:\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. Use Green's theorem to derive a formula for the area of P only in terms of the coordinates of its vertices.

Solution. One can show (HW) that if L is the line segment from (a, b) to (c, d), then

$$
\int_{L}-y d x+x d y=a d-b c=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Assuming that ∂P is oriented positively, our area formula above tells us that

$$
\operatorname{Area}(P)=\frac{1}{2} \int_{\partial P}-y d x+x d y
$$

Since the boundary of P consists of the line segments between the $\left(x_{i}, y_{i}\right)$ we find that

$$
\frac{1}{2} \int_{\partial P}-y d x+x d y=\frac{1}{2} \sum_{i=1}^{n}\left|\begin{array}{cc}
x_{i} & y_{i} \\
x_{i+1} & y_{i+1}
\end{array}\right|
$$

where we define $\left(x_{n+1}, y_{n+1}\right)=\left(x_{1}, y_{1}\right)$.

Example 9

Compute the area of the polygon with vertices $(0,0),(4,3),(3,4)$, $(-1,3),(-2,1)$ and $(1,2)$.

Solution. We use the preceding example:
$\operatorname{Area}(P)=\frac{1}{2}\left(\left|\begin{array}{ll}0 & 0 \\ 4 & 3\end{array}\right|+\left|\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right|+\left|\begin{array}{cc}3 & 4 \\ -1 & 3\end{array}\right|+\left|\begin{array}{cc}-1 & 3 \\ -2 & 1\end{array}\right|+\left|\begin{array}{cc}-2 & 1 \\ 1 & 2\end{array}\right|+\left|\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right|\right)$

$$
\begin{aligned}
& =\frac{1}{2}((0-0)+(16-9)+(9+4)+(-1+6)+(-4-1)+(0-0)) \\
& =\frac{1}{2}(7+13+5-5)=10 .
\end{aligned}
$$

Have a great Thanksgiving break!!!

