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Introduction

Recall that if F = Pi+ Qj is a conservative vector field and C is a
closed curve (loop), then
/ F-dr=0.
c

Furthermore, if the domain D of F is simply connected (has no
“holes” ), then F is conservative if and only if

0Q P

ox Oy

Green's theorem provides an explanation of this phenomenon by
giving a direct relationship between the integrals of F and

0Q 0P
— — —, for arbitrary F.
ox Oy y



Motivating Example

Consider / P dx + Q@ dy, where C is the boundary of the unit

c
square [0, 1] x [0, 1], travelled counterclockwise:

y C
1 <
y D y
X
AN
1

Let L, R, T, B denote the left, right, top and bottom edges of C,
respectively.
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On R and L we have dx = 0 so that

1
/de+Qdy=/Qdy:/ Q(1,y)dy,
R R 0
1
/de+Qdy= /Qdyz —/ Q(0,y)dy
L L 0

Thus

x=1
dy
x=0

/ de+Qdy—/ Q(L,y) — (Oy)dy—/ Q(x,y)
L+R

//Qxxy)dxdy—/ —dA
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In an entirely similar fashion one can also show that

1
/ de—l—Qdy:/ Pdx = —/ P(x,1) — P(x,0) dx
B+T B+T 0
1 y=1 1 1
:—/ P(x,y) dx = —/ / P, (x,y)dy dx
y:O 0 0

/ — dA.
Therefore

/de+Qdy—/ de+Qdy—//@—a—PdA
B+R+T+L Oy

This is a particular instance of Green's Theorem.
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Preliminary Definitions

Definition
A curve C is called closed if its initial and terminal points are the
same (i.e. C is a loop). We say that a closed curve is simple if it

never crosses through itself.

C C

Simple, closed Closed, not simple
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Definition

Let C be a simple closed curve enclosing a region D C R?. We say
that C is positively oriented if D is always to the left as you travel
along C.

Positive orientation

Finally, recall that a region D C R? is called simply connected if it
has no “holes.”
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Green's Theorem

We can now state our main result of the day.

Theorem 1 (Green's Theorem)

Let D C R? be a simply connected region with positively oriented
simple closed boundary curve OD. If P,Q € C'(D), then

P
/ de—i—Qdy://@—a—dA.
oD p Ox Oy

The setup for Green's Theorem.

Remark. Green's Theorem
generalizes the fact that
Jc F - dr =0 for a conservative
field F and a closed curve C.

oD
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Remark

Recall that if F = Pi+ Qj + Rk,then

i i k
curlF =V xF= |0/0x 0/dy 0/0z|.
P Q R

If we view F(x,y) = Pi+ Qj as having zero z-component, then

this becomes 00 op

If we drop the k, we can restate Green's theorem in vector form as

/é)DFdr: //DcurI(F)dA.
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SETES

Evaluate / xy? dx + 2x%y dy, where C is the triangle with vertices
C
(0,0), (2,2), (2,4), oriented positively.

Solution.
y
4 oD=C We apply Green's theorem.
2 D The region D is Type |, with

“bottom” y = x and “top”
X y =2x, for 0 < x <2.

2
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Thus

2x
/Xy dx + 2x ydy—/ / &2 2x2y)—%(xy2)dydx

2x 2x
/ / 4xy — 2xy dy dx—/ / 2xy dy dx
:/ xy? dx—/ 3x3 dx
0 y=x 0

3x%4 |2

- | =12}

4

0
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Evaluate / xe > dx + (x4 T 2x2y2) dy, where C is the boundary

C
of the semi-annulus shown below.

Solution.

We apply Green's theorem.

Note that the region D enclosed
by C has polar description 1 <
r<2 m/4<60<bn/4
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Therefore

0 0
—>d 4222d://—4222—— ~)dA
/Cxe x+(x" + 2x7y<) dy D@x(x + 2x°y%) 8y(Xe )

5w/4 2
= // 4x3 + 4xy? dA = / / 4r* cos 0 dr do
D w/4 1
57/4 2 5m/4 /512
:4/ cos@d@x/ r4dr:4<sin9 ><— )
/4 1 /4 5 1

:4<_\@> (255—1> _ _121\/5‘
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Evaluate / F - dr, where F = M
x2 + y2

c
oriented simple closed curve enclosing the origin.

and C is any positively

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0,0) so Green's theorem does

not apply.

e
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Example 4

Evaluate [ F-dr, where F= —— = and C is any positively

: /¢ X2 4y .
oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0,0) so Green's theorem does

not apply.

y Let C’ denote a small circle of
radius a centered at the origin
and enclosed by C.

Introduce line segments along
the x-axis and split the region
C between C and C’ in two.
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and C is any positively

Evaluate / F - dr, where F = _27
C X +y
oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0,0) so Green's theorem does

not apply.

y Let C’ denote a small circle of
radius a centered at the origin
and enclosed by C.

Introduce line segments along
the x-axis and split the region
between C and C’ in two.

C
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Example 6

Evaluate [ F-dr, where F= —— = and C is any positively

: /¢ X2 4y .
oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0,0) so Green's theorem does

not apply.

Let C’ denote a small circle of
radius a centered at the origin
and enclosed by C.

Introduce line segments along
the x-axis and split the region
between C and C’ in two.
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Evaluate / F.dr, where F= —— = and C is any positively

: /¢ X2 4y .
oriented simple closed curve enclosing the origin.

Solution. Although the region enclosed by C is simply connected,
the domain of F does not include (0,0) so Green's theorem does

not apply.

Let C’ denote a small circle of
radius a centered at the origin
and enclosed by C.

Introduce line segments along
the x-axis and split the region
between C and C’ in two.
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Because the integrals along the line segments cancel out we have
/ F-dr:/ F-dr:/ F-dr+/ F-dr.
c+cC’ Dy +8D; oDy aD,

We can apply Green's theorem on D; and D,. Since curl(F) =0
(previous lecture) we have

/ F'dr+/ F-dr:// OdA+// 0dA=0.
8D1 8D2 D1 D2
It now follows that

/F-r:/ F-r
C el
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We parametrize —C’ in the usual way:

r(t) = (acost,asint) = ¥ (t) = (—asint,acost),

with 0 < t < 27. Thus
—asinti+ acostj )
+ ] - (—asint,acost) dt

2
F-dr:/
/_C/ o a2cos?t+ a’sin’t

27ra2
:/ 2 dt=[or]
0
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Remarks

Using a subdivision argument as in the preceding example, one can
show that Green's theorem applies to a multiply connected region
D provided:

1. The boundary 0D consists of multiple simple closed curves.

2. Each piece of 9D is positively oriented relative to D.

/ de—l—Qdy:// %—8—PdA
O oD p Ox Oy

D for P, @ € CY(D).
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Remarks (Cont.)

Suppose D is a region to which Green's theorem applies. Then

Area(D //dA— //8x —@—)dA

——/ —y dx + x dy.
2 Jap

That is, we can compute the area of D by integrating
w = 3(—y dx + x dy) around OD.

This observation provides the theoretical basis behind what's

known as a planimeter, which can compute the area of a plane
region by tracing its boundary.
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Example 8

Suppose we are given n vertices of a polygon P: (x1,y1),
(x2,¥2),- -+, (Xn, ¥n). Use Green's theorem to derive a formula for
the area of P only in terms of the coordinates of its vertices.

Solution. One can show (HW) that if L is the line segment from
(a, b) to (c,d), then

/—ydx—l—xdy:ad—bc:
L

a b
c d|’

Assuming that OP is oriented positively, our area formula above
tells us that

1
Area(P) = 5/ —ydx + xdy.
oP
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Since the boundary of P consists of the line segments between the
(xi, yi) we find that

1 1| xi Vi
- —ydx+xdy =|= ! "
2 /aP Y =2 — [Xi+1 Vi1
where we define (xp+1, Ynt+1) = (x1,)1)- O

Example 9

Compute the area of the polygon with vertices (0,0), (4,3), (3,4),
(—1,3), (—2,1) and (1,2).

Solution. We use the preceding example:
1//0 0 4 3 3 4 -1 3 -2 1 1 2
SR P R R R R P B )
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(0-0)+(16—-9)+(9+4)+(-1+6)+(—4—-1)+(0—-0))

(7+13+5-5) =

l\.)ll—l r\.>||—l

Have a great Thanksgiving break!!!
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