Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}

Ryan C. Daileda

Trinity University

Calculus III

Introduction

- Vectors represent quantities that have both size (magnitude) and direction.
- Examples of vector quantities: displacement, velocity, acceleration, force, electric/magnetic fields, etc.
- In the context of vectors, real numbers are referred to as scalars.
- Examples of scalar quantities: speed, mass, temperature, energy, etc.

Representing Vectors

A vector in \mathbb{R}^{2} or \mathbb{R}^{3} can be visualized as an arrow:

Remarks

- We use boldface type for variables that represent vectors, e.g. $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- Alternate terminology:

$$
\begin{aligned}
& \text { magnitude }=\text { length } \\
& \text { terminal point }=\text { tip } \\
& \text { initial point }=\text { tail }
\end{aligned}
$$

- The magnitude of a vector \mathbf{v} is denoted $|\mathbf{v}|$.
- There's no standard way to denote the direction of a vector.

Vector Equality

Two vectors \mathbf{u} and \mathbf{v} are considered equal (i.e. $\mathbf{u}=\mathbf{v}$) whenever they have the same magnitude and direction.

Equality of vectors does not depend on their location in space.

The Zero Vector

As with numbers, it is useful to have a vector with no "content."

The zero vector, denoted $\mathbf{0}$, has no magnitude and no direction. It is simply a point:

0

The tip and tail of $\mathbf{0}$ coincide, so $|\mathbf{0}|=0$.

Vector Arithmetic

Vector Addition: Two vectors can be added by positioning them "tip-to-tail," and then inserting a vector from the tail of the first to the tip of the second.

The following diagram shows that vector addition is commutative:

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

It is also geometrically clear that the zero vector "acts like zero":

$$
\mathbf{v}+\mathbf{0}=\mathbf{0}+\mathbf{v}=\mathbf{v} .
$$

Scalar Multiplication: If \mathbf{v} is a vector and c is a scalar, then the scalar multiple $c \mathbf{v}$ is the vector with the following magnitude and direction:

- $|c \mathbf{v}|=|c| \cdot|\mathbf{v}|$
- direction of $c \mathbf{v}= \begin{cases}\text { direction of } \mathbf{v} & \text { if } c>0, \\ \text { opp. dir. of } \mathbf{v} & \text { if } c<0 .\end{cases}$

That is, $c \mathbf{v}$ "scales" \mathbf{v} by a factor of c (hence the term "scalar").

Notice that $|0 \mathbf{v}|=|0| \cdot|\mathbf{v}|=0 \cdot|\mathbf{v}|=0$, which means that

$$
0 \mathbf{v}=\mathbf{0}
$$

So again zero "acts like zero."

Vector Subtraction:

We combine addition and scalar multiplication and define

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

Because - v interchanges the tip and tail of \mathbf{v}, we have the following diagram:

That is, we subtract vectors by placing them "tail-to-tail."
Notice that, in particular, this means $\mathbf{v}-\mathbf{v}=\mathbf{0}$.

Remarks

- Addition and scalar multiplication are geometrically defined operations on vectors.
- We call these operations "addition" and "multiplication" because they obey many of the same laws that ordinary addition and multiplication do.
- For example, addition is associative:

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

And the distributive law holds:

$$
c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} .
$$

- See the box on page 802 of the text for a more complete list of the algebraic properties of these operations.

Vector Components

We now consider vectors from the analytic point of view.
Given a vector \mathbf{v} (in \mathbb{R}^{2} or \mathbb{R}^{3}) we position it with its tail at the origin:

In this configuration, the coordinates of the tip of \mathbf{v} (the point P) are the components of \mathbf{v}.

We write $\mathbf{v}=\langle a, b, c\rangle$.

Remarks

- Both points and vectors now have "coordinates." The difference between the two is primarily how we interpret them:
* The coordinates of a point tell you its location.
* The components of a vector tell you where the tip is, relative to the tail.
- Vector components provide a symbolic means of talking about magnitude and direction.
- We will focus on components in \mathbb{R}^{3}, but everything that follows holds for \mathbb{R}^{2} as well, if one simply "forgets" the third component.

Vector Arithmetic with Components

The geometric operations of vector addition and scalar multiplication are easily represented using components.

If $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, then:
(1) $\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle$
(2) $c \mathbf{v}=\left\langle c v_{1}, c v_{2}, c v_{3}\right\rangle$
(3) $|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$

Thus, analytically we add and scale vectors "component-wise."

Examples

Example 1

If $\mathbf{a}=\langle 1,2-3\rangle$ and $\mathbf{b}=\langle-2,-1,5\rangle$, find $\mathbf{a}+\mathbf{b}, 2 \mathbf{a}+3 \mathbf{b}$ and $|\mathbf{a}-\mathbf{b}|$.

Solution. We have

$$
\mathbf{a}+\mathbf{b}=\langle 1+(-2), 2+(-1),-3+5\rangle=\langle-1,1,2\rangle .
$$

Likewise

$$
2 \mathbf{a}+3 \mathbf{b}=\langle 2,4,-6\rangle+\langle-6,-3,15\rangle=\langle-4,1,9\rangle .
$$

Finally

$$
|\mathbf{a}-\mathbf{b}|=|\langle 1-(-2), 2-(-1),-3-5\rangle|=|\langle 3,3,-8\rangle|
$$

$$
=\sqrt{3^{2}+3^{2}+(-8)^{2}}=\sqrt{82}
$$

Example 2

Find the components of the vector that points from $A=\left(a_{1}, a_{2}, a_{3}\right)$ to $B=\left(b_{1}, b_{2}, b_{3}\right)$.

Solution. We introduce the origin O and consider the following diagram:

Because a begins at the origin and ends at A, its components are the coordinates of A :

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

Likewise we have

$$
\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle
$$

Because a and bare tail-to-tail, $\overrightarrow{A B}$ must be their difference:

$$
\overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, b_{3}-a_{3}\right\rangle .
$$

Remark: To find $\overrightarrow{A B}$ we treat A and B as vectors and subtract the beginning from the end.

Example 3

Find a unit vector (vector of length 1) that points in the direction of $\mathbf{v}=\langle-1,3,4\rangle$.

Solution. Notice that the vector $\frac{1}{|v|} \mathbf{v}$ has magnitude

$$
\left|\frac{1}{|\mathbf{v}|} \mathbf{v}\right|=\frac{1}{|\mathbf{v}|} \cdot|\mathbf{v}|=1
$$

and the same direction as \mathbf{v} since $1 /|\mathbf{v}|>0$.
So we simply need to "divide" \mathbf{v} by $|\mathbf{v}|$ to obtain the vector we want:

$$
\mathbf{u}=\frac{1}{\sqrt{(-1)^{2}+3^{2}+4^{2}}}\langle-1,3,4\rangle=\left\langle\frac{-1}{\sqrt{26}}, \frac{3}{\sqrt{26}}, \frac{4}{\sqrt{26}}\right\rangle .
$$

The Standard Basis

The standard basis vectors are

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle .
$$

They represent unit displacements along the coordinate axes.
Every vector can be expressed in terms of \mathbf{i}, \mathbf{j} and \mathbf{k} :

$$
\begin{aligned}
\langle a, b, c\rangle & =\langle a, 0,0\rangle+\langle 0, b, 0\rangle+\langle 0,0, c\rangle \\
& =a\langle 1,0,0\rangle+b\langle 0,1,0\rangle+c\langle 0,0,1\rangle \\
& =a \mathbf{i}+b \mathbf{j}+c \mathbf{k} .
\end{aligned}
$$

This alternate notation will be useful when we discuss the cross product of vectors.

Examples

(1) $\langle 1,2,3\rangle=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
(2) $\langle-1,0,2\rangle=-\mathbf{i}+2 \mathbf{k}$
(3) $\mathbf{k}-3 \mathbf{j}=\langle 0,-3,1\rangle$
(9) In \mathbb{R}^{2} we only need $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$:

$$
\langle 3,-2\rangle=3 \mathbf{i}-2 \mathbf{j} .
$$

