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Introduction

Today we will introduce our second vector-vector
multiplication operation, namely the cross product.

From an analytic point of view, the cross product is
substantially more complicated than the dot product.

Geometrically, however, it has a much more concrete
interpretation.

The definition of the cross product requires the use of
determinants of (small) matrices, and this is where we will
begin.
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Determinants

A 2× 2 determinant is given by
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= ad − bc .

A 3× 3 determinant is given by
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Examples

We have:
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∣

4 5
2 −1
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= 4 · (−1)− 5 · 2 = − 14
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3 7
2 5
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= 3 · 5− 7 · 2 = 1
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−2 −5 1
−4 3 −1
3 3 −2
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= (−2)
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3 −1
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− (−5)
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−4 −1
3 −2
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+ 1
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−4 3
3 3
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= (−2)(−6 − (−3)) + 5(8 − (−3)) + (−12− 9)

= (−2)(−3) + 5 · 11− 21 = 40
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What Are Determinants?

Determinants measure “geometric content.”

1. Two vectors u = 〈a, b〉 and v = 〈c , d〉 in R
2 determine a

parallelogram:

u

v

A

One can show its area A is given by

A =
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c d
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∣
= |ad − bc |.
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2. Three vectors a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉 and
c = 〈c1, c2, c3〉 in R

3 determine a parallelepiped:

a

c

b
V

Its volume is given by

V =
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a1 a2 a3
b1 b2 b3
c1 c2 c3
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∣
∣
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.

3. The sign of the determinant has to do with the relative
orientation of the vectors involved.
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Example 1

Find the area of the parallelogram with vertices (1, 1), (2, 4), (6, 5)
and (5, 2).

Solution. Let’s draw a sketch first:

a

b

(1,1)

(5,2)

(6,5)

(2,4)

x

y

We have

a = 〈5− 1, 2− 1〉 = 〈4, 1〉,

b = 〈2− 1, 4− 1〉 = 〈1, 3〉.
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Therefore the area is (the absolute value of)

∣
∣
∣
∣

4 1
1 3

∣
∣
∣
∣
= 4 · 3− 1 · 1 = 11.

Remarks.

If we had reversed the roles of a and b, the determinant would
have been −11. The absolute value “corrects” the negative
sign.

One can pose analogous problems using the vertices of a
parallelepiped in R

3. In this case we would use a 3× 3
determinant.
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The Cross Product

Definition

If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, their cross product is

a× b =
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∣
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i j k

a1 a2 a3
b1 b2 b3
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=
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a2 a3
b2 b3
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a1 a3
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a1 a2
b1 b2
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∣
∣
k.

Example. If a = 〈1, 2, 3〉 and b = 〈−2, 0, 4〉, then

a× b =

∣
∣
∣
∣
∣
∣

i j k

1 2 3
−2 0 4
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∣
∣
∣
∣
∣

=

∣
∣
∣
∣

2 3
0 4

∣
∣
∣
∣
i−

∣
∣
∣
∣

1 3
−2 4

∣
∣
∣
∣
j+

∣
∣
∣
∣

1 2
−2 0

∣
∣
∣
∣
k

= (8− 0)i − (4 + 6)j+ (0 + 4)k = 〈8,−10, 4〉.
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Properties of the Cross Product

The cross product is only defined in R
3. But we will

sometimes apply it in two dimensions by treating R
2 as the

xy -plane in R
3. That is, we treat 〈a, b〉 as 〈a, b, 0〉.

a× b is a vector (as opposed to a · b).

The cross product “acts like” multiplication in most ways, e.g.

a× (b+ c) = a× b+ a× c,

(ca)× b = c(a× b) = a× (cb), a× 0 = 0.

See section 12.4 for a more thorough list.
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Properties (Cont.)

However, there are two notable differences between × and
“ordinary” multiplication:

× is not associative:

a× (b× c) 6= (a × b)× c

in general.

× is anti-commutative:

b× a = − a× b.

The second property follows from the fact that interchanging two
rows in a determinant changes its sign. We will have a geometric
interpretation shortly.
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The Geometry of the Cross Product

1. Since

a× b =

∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3
b1 b2 b3
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∣
∣
∣
∣
∣

=
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∣
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a2 a3
b2 b3

∣
∣
∣
∣

︸ ︷︷ ︸

x component

i−
∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣

︸ ︷︷ ︸

y component

j+

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣

︸ ︷︷ ︸

z component

k,

if c = 〈c1, c2, c3〉 and we replace i, j, k with c1, c2, c3 (resp.), we
immediately obtain

(a × b) · c =

∣
∣
∣
∣
∣
∣

c1 c2 c3
a1 a2 a3
b1 b2 b3

∣
∣
∣
∣
∣
∣

,

so that

|c · (a× b)| = volume of parallelepiped determined by a,b, c.
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2. Because of this, we must have

a · (a× b) = b · (a × b) = 0,

since the parallelepiped determined by only two vectors has no
volume.

That is
a× b is orthogonal to both a and b.

This almost determines the direction of a× b since there is only
one line simultaneously perpendicular to two (nonparallel) vectors.
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The precise direction of a× b is determined by the right-hand rule:

a

b

a x b

θ

Note that if we interchange a and b, the right-hand rule gives the
opposite direction.

This (geometrically) explains why a× b = −b× a.
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3. Let u be a unit vector in the direction of a× b.

Then a,b,u generate a right-angled parallelepiped:

a

b

θ

u

According to elementary geometry

Volume = (height)(area of base)

= area of parallelogram determined by a and b

= |a| · |b| · sin θ.
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But we also have

Volume = |u · (a× b)| = |u| · |a× b| · cos 0 = |a × b|.

Putting these together we conclude that

|a× b| = |a| · |b| · sin θ.

We now have a complete geometric description of the cross
product.
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Examples

Example 2

Let u and v be the vectors shown below. If |u| = 3 and |v| = 7,
describe u× v.

u

v

30°

Solution. We place u and v tail-to-tail to get the correct angle:

u

v

150°
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We find that u× v has magnitude

|u× v| = |u| · |v| · sin 150◦ = 3 · 7 · 1
2
=

21

2
,

and the right-hand rule tells us that u× v points directly

into the page.

Example 3

Find a nonzero vector that is perpendicular to the plane containing
the points P = (2, 1, 5), Q = (−1, 3, 4), R = (3, 0, 6).
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Solution. We take the plane containing P , Q and R as the page
and make a rough sketch:

Q

R

P

The vectors
−→
PQ and

−→
PR lie in the plane, so

−→
PQ ×−→

PR

will be perpendicular to it.
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Since −→
PQ = 〈−1− 2, 3− 1, 4− 5〉 = 〈−3, 2,−1〉,
−→
PR = 〈3− 2, 0− 1, 6 − 5〉 = 〈1,−1, 1〉,

we find that

−→
PQ ×−→

PR =

∣
∣
∣
∣
∣
∣

i j k

−3 2 −1
1 −1 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

2 −1
−1 1

∣
∣
∣
∣
i−

∣
∣
∣
∣

−3 −1
1 1

∣
∣
∣
∣
j+

∣
∣
∣
∣

−3 2
1 −1

∣
∣
∣
∣
k

= i− (−2)j + k

= 〈1, 2, 1〉.
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Example 4

Is the point S = (1, 1, 1) in the plane of the preceding example?

Solution. If S lies in the plane defined by P , Q, R , then the

parallelepiped defined by the vectors
−→
PQ,

−→
PR,

−→
PS will be flat.

That is, its volume will be zero:

|−→PS · (
−→
PQ ×−→

PR)| = 0.

However,
−→
PS = 〈1− 2, 1− 1, 1 − 5〉 = 〈−1, 0,−4〉, so that

−→
PS · (−→PQ ×−→

PR) = 〈−1, 0,−4〉 · 〈1, 2, 1〉 = − 5 6= 0.

Thus S is not in the plane defined by P ,Q,R .
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Example 5

Find the area of the triangle with vertices A = (1, 2, 3),
B = (2, 0,−1), C = (4, 1,−3).

Solution. The area of the triangle is half of the area of the

parallelogram determined by
−→
AB and

−→
AC :

C

B

A

This is given by 1
2

∣
∣
∣
−→
AB ×−→

AC
∣
∣
∣.
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Since −→
AB = 〈2− 1, 0− 2,−1− 3〉 = 〈1,−2,−4〉,
−→
AC = 〈4− 1, 1− 2,−3− 3〉 = 〈3,−1,−6〉,

we find that

−→
AB ×−→

AC =

∣
∣
∣
∣
∣
∣

i j k

1 −2 −4
3 −1 −6

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

−2 −4
−1 −6

∣
∣
∣
∣
i−

∣
∣
∣
∣

1 −4
3 −6

∣
∣
∣
∣
j+

∣
∣
∣
∣

1 −2
3 −1

∣
∣
∣
∣
k

= 8i− 6j+ 5k = 〈8,−6, 5〉.

Thus

1

2

∣
∣
∣
−→
AB ×−→

AC
∣
∣
∣ =

1

2

√

82 + (−6)2 + 52 =
1

2

√
125 =

5
√
5

2
.
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