The Cross Product

Ryan C. Daileda

Trinity University

Calculus III

Introduction

- Today we will introduce our second vector-vector multiplication operation, namely the cross product.
- From an analytic point of view, the cross product is substantially more complicated than the dot product.
- Geometrically, however, it has a much more concrete interpretation.
- The definition of the cross product requires the use of determinants of (small) matrices, and this is where we will begin.

Determinants

A 2×2 determinant is given by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

A 3×3 determinant is given by

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| .
$$

Examples

We have:

$$
\begin{aligned}
&\left|\begin{array}{cc}
4 & 5 \\
2 & -1
\end{array}\right|=4 \cdot(-1)-5 \cdot 2=-14 \\
&\left|\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right|=3 \cdot 5-7 \cdot 2=1 \\
&\left|\begin{array}{ccc}
-2 & -5 & 1 \\
-4 & 3 & -1 \\
3 & 3 & -2
\end{array}\right|=(-2)\left|\begin{array}{ll}
3 & -1 \\
3 & -2
\end{array}\right|-(-5)\left|\begin{array}{cc}
-4 & -1 \\
3 & -2
\end{array}\right|+1\left|\begin{array}{cc}
-4 & 3 \\
3 & 3
\end{array}\right| \\
&=(-2)(-6-(-3))+5(8-(-3))+(-12-9) \\
&=(-2)(-3)+5 \cdot 11-21=40
\end{aligned}
$$

What Are Determinants?

Determinants measure "geometric content."

1. Two vectors $\mathbf{u}=\langle a, b\rangle$ and $\mathbf{v}=\langle c, d\rangle$ in \mathbb{R}^{2} determine a parallelogram:

One can show its area A is given by

$$
A=\left|\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\right|=|a d-b c|
$$

2. Three vectors $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ in \mathbb{R}^{3} determine a parallelepiped:

Its volume is given by

$$
V=\left\|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right\| .
$$

3. The sign of the determinant has to do with the relative orientation of the vectors involved.

Example 1

Find the area of the parallelogram with vertices $(1,1),(2,4),(6,5)$ and (5, 2).

Solution. Let's draw a sketch first:

We have

$$
\begin{aligned}
& \mathbf{a}=\langle 5-1,2-1\rangle=\langle 4,1\rangle \\
& \mathbf{b}=\langle 2-1,4-1\rangle=\langle 1,3\rangle
\end{aligned}
$$

Therefore the area is (the absolute value of)

$$
\left|\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right|=4 \cdot 3-1 \cdot 1=11 .
$$

Remarks.

- If we had reversed the roles of \mathbf{a} and \mathbf{b}, the determinant would have been -11 . The absolute value "corrects" the negative sign.
- One can pose analogous problems using the vertices of a parallelepiped in \mathbb{R}^{3}. In this case we would use a 3×3 determinant.

The Cross Product

Definition

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, their cross product is

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} .
$$

Example. If $\mathbf{a}=\langle 1,2,3\rangle$ and $\mathbf{b}=\langle-2,0,4\rangle$, then

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
-2 & 0 & 4
\end{array}\right|=\left|\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 3 \\
-2 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 2 \\
-2 & 0
\end{array}\right| \mathbf{k} \\
& =(8-0) \mathbf{i}-(4+6) \mathbf{j}+(0+4) \mathbf{k}=\langle 8,-10,4\rangle .
\end{aligned}
$$

Properties of the Cross Product

- The cross product is only defined in \mathbb{R}^{3}. But we will sometimes apply it in two dimensions by treating \mathbb{R}^{2} as the $x y$-plane in \mathbb{R}^{3}. That is, we treat $\langle a, b\rangle$ as $\langle a, b, 0\rangle$.
- $\mathbf{a} \times \mathbf{b}$ is a vector (as opposed to $\mathbf{a} \cdot \mathbf{b}$).
- The cross product "acts like" multiplication in most ways, e.g.

$$
\begin{gathered}
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\
(c \mathbf{a}) \times \mathbf{b}= \\
c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b}), \quad \mathbf{a} \times \mathbf{0}=\mathbf{0} .
\end{gathered}
$$

See section 12.4 for a more thorough list.

Properties (Cont.)

However, there are two notable differences between \times and "ordinary" multiplication:

- \times is not associative:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

in general.

- \times is anti-commutative:

$$
\mathbf{b} \times \mathbf{a}=-\mathbf{a} \times \mathbf{b} .
$$

The second property follows from the fact that interchanging two rows in a determinant changes its sign. We will have a geometric interpretation shortly.

The Geometry of the Cross Product

1. Since

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\underbrace{\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|}_{x \text { component }} \mathbf{i} \underbrace{\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|}_{y \text { component }} \mathbf{j}+\underbrace{\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|}_{z \text { component }} \mathbf{k},
$$

if $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ and we replace \mathbf{i}, \mathbf{j}, \mathbf{k} with c_{1}, c_{2}, c_{3} (resp.), we immediately obtain

$$
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|,
$$

so that

$$
|\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})|=\text { volume of parallelepiped determined by } \mathbf{a}, \mathbf{b}, \mathbf{c} \text {. }
$$

2. Because of this, we must have

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0
$$

since the parallelepiped determined by only two vectors has no volume.

That is

$$
\mathbf{a} \times \mathbf{b} \text { is orthogonal to both } \mathbf{a} \text { and } \mathbf{b} \text {. }
$$

This almost determines the direction of $\mathbf{a} \times \mathbf{b}$ since there is only one line simultaneously perpendicular to two (nonparallel) vectors.

The precise direction of $\mathbf{a} \times \mathbf{b}$ is determined by the right-hand rule:

Note that if we interchange \mathbf{a} and \mathbf{b}, the right-hand rule gives the opposite direction.

This (geometrically) explains why $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$.
3. Let \mathbf{u} be a unit vector in the direction of $\mathbf{a} \times \mathbf{b}$.

Then $\mathbf{a}, \mathbf{b}, \mathbf{u}$ generate a right-angled parallelepiped:

According to elementary geometry

$$
\begin{aligned}
\text { Volume } & =(\text { height })(\text { area of base }) \\
& =\text { area of parallelogram determined by } \mathbf{a} \text { and } \mathbf{b} \\
& =|\mathbf{a}| \cdot|\mathbf{b}| \cdot \sin \theta
\end{aligned}
$$

But we also have

$$
\text { Volume }=|\mathbf{u} \cdot(\mathbf{a} \times \mathbf{b})|=|\mathbf{u}| \cdot|\mathbf{a} \times \mathbf{b}| \cdot \cos 0=|\mathbf{a} \times \mathbf{b}|
$$

Putting these together we conclude that

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}| \cdot|\mathbf{b}| \cdot \sin \theta .
$$

We now have a complete geometric description of the cross product.

Examples

Example 2

Let \mathbf{u} and \mathbf{v} be the vectors shown below. If $|\mathbf{u}|=3$ and $|\mathbf{v}|=7$, describe $\mathbf{u} \times \mathbf{v}$.

Solution. We place \mathbf{u} and \mathbf{v} tail-to-tail to get the correct angle:

We find that $\mathbf{u} \times \mathbf{v}$ has magnitude

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}| \cdot|\mathbf{v}| \cdot \sin 150^{\circ}=3 \cdot 7 \cdot \frac{1}{2}=\frac{21}{2}
$$

and the right-hand rule tells us that $\mathbf{u} \times \mathbf{v}$ points directly

$$
\begin{array}{|l|}
\hline \text { into the page. } \\
\hline
\end{array}
$$

Example 3

Find a nonzero vector that is perpendicular to the plane containing the points $P=(2,1,5), Q=(-1,3,4), R=(3,0,6)$.

Solution. We take the plane containing P, Q and R as the page and make a rough sketch:

The vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ lie in the plane, so

$$
\overrightarrow{P Q} \times \overrightarrow{P R}
$$

will be perpendicular to it.

Since

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle-1-2,3-1,4-5\rangle=\langle-3,2,-1\rangle, \\
& \overrightarrow{P R}=\langle 3-2,0-1,6-5\rangle=\langle 1,-1,1\rangle
\end{aligned}
$$

we find that

$$
\begin{aligned}
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right| \mathbf{k} \\
& =\mathbf{i}-(-2) \mathbf{j}+\mathbf{k} \\
& =\langle 1,2,1\rangle .
\end{aligned}
$$

Example 4

Is the point $S=(1,1,1)$ in the plane of the preceding example?
Solution. If S lies in the plane defined by P, Q, R, then the parallelepiped defined by the vectors $\overrightarrow{P Q}, \overrightarrow{P R}, \overrightarrow{P S}$ will be flat.
That is, its volume will be zero:

$$
|\overrightarrow{P S} \cdot(\overrightarrow{P Q} \times \overrightarrow{P R})|=0
$$

However, $\overrightarrow{P S}=\langle 1-2,1-1,1-5\rangle=\langle-1,0,-4\rangle$, so that

$$
\overrightarrow{P S} \cdot(\overrightarrow{P Q} \times \overrightarrow{P R})=\langle-1,0,-4\rangle \cdot\langle 1,2,1\rangle=-5 \neq 0
$$

Thus S is not in the plane defined by P, Q, R.

Example 5

Find the area of the triangle with vertices $A=(1,2,3)$, $B=(2,0,-1), C=(4,1,-3)$.

Solution. The area of the triangle is half of the area of the parallelogram determined by $\overrightarrow{A B}$ and $\overrightarrow{A C}$:

This is given by $\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$.

Since

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 2-1,0-2,-1-3\rangle=\langle 1,-2,-4\rangle, \\
& \overrightarrow{A C}=\langle 4-1,1-2,-3-3\rangle=\langle 3,-1,-6\rangle,
\end{aligned}
$$

we find that

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & -4 \\
3 & -1 & -6
\end{array}\right|=\left|\begin{array}{cc}
-2 & -4 \\
-1 & -6
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & -4 \\
3 & -6
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & -2 \\
3 & -1
\end{array}\right| \mathbf{k} \\
& =8 \mathbf{i}-6 \mathbf{j}+5 \mathbf{k}=\langle 8,-6,5\rangle .
\end{aligned}
$$

Thus

$$
\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2} \sqrt{8^{2}+(-6)^{2}+5^{2}}=\frac{1}{2} \sqrt{125}=\frac{5 \sqrt{5}}{2}
$$

