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Introduction

Our goal today is to find equations representing lines and planes in
space (R3).

The geometry and arithmetic of vectors will be our main tools.

We define the position vector of a point (x , y , z) to be the vector
〈x , y , z〉, the vector that “points to” (x , y , z):
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Lines in R
3

A line in R
3 is determined by two pieces of data:

A point P = (x0, y0, z0) on the line;

A direction vector v = 〈a, b, c〉.

Let r0 = 〈x0, y0, z0〉 be the position vector of P .

Let Q = (x , y , z) be any other point on the line, and introduce the
origin O.
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From the diagram we see that the position vector of Q is given by
the vector equation

r(t) = r0 + tv, t ∈ R.

In terms of components we have

r(t) = r0 + tv

= 〈x0, y0, z0〉+ t〈a, b, c〉
= 〈x0 + at, y0 + bt, z0 + ct〉,

which tells us that Q can also be given by the parametric equations

x = x0 + at,

y = y0 + bt,

z = z0 + ct.
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Examples

Example 1

Find a vector equation for the line through P = (−1, 2, 3) and
Q = (2,−2, 5).

Solution. We need two things: a point on the line and the
direction (vector) of the line.

We take P = (−1, 2, 3) as our base point.

The vector
−→
PQ = 〈2− (−1),−2− 2, 5 − 3〉 = 〈3,−4, 2〉 gives the

correct direction.

So the line is given by

r(t) = 〈−1, 2, 3〉 + t〈3,−4, 2〉 = 〈−1 + 3t, 2− 4t, 3 + 2t〉.
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Example 2

Find a vector equation for the line through (5,−6, 7) that is parallel
to the line with parametric equations x = 1+ t, y = 2, z = 3+ 2t.

Solution. We need two things: a point on the line and the
direction (vector) of the line.

We are given P = (5,−6, 7) on the line.

To find the direction vector of the given line we simply read the
coefficients of t in each given component:

v = 〈1, 0, 2〉.

So the line is given by

r(t) = 〈5,−6, 7〉 + t〈1, 0, 2〉 = 〈5 + t,−6, 7 + 2t〉.
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Example 3

Find the point of intersection of the lines from the preceding
examples.

Solution. The two lines are given by

r1(t) = 〈−1 + 3t, 2− 4t, 3 + 2t〉,
r2(t) = 〈5 + t,−6, 7 + 2t〉.

They intersect when r1(t) = r2(s) for some r , s ∈ R. Equating
components gives the system

−1 + 3t = 5 + s,

2− 4t = −6,

3 + 2t = 7 + 2s.
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The middle equation gives t = 2. But we must be sure both of the
other equations can be solved simultaneously.

With t = 2 the first becomes 5 = 5 + s, so that s = 0.

And with t = 2, s = 0, the third is 7 = 7, which is valid.

So the lines intersect at (the point with position vector)

r1(2) = r2(0) = 〈5,−6, 7〉 .
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Example 4

Show that the lines

r1(t) = 〈1 + t,−3− t, 5 + 2t〉,

r2(s) = 〈4− s,−3 + s, 6 + 2s〉,

are skew (neither intersecting nor parallel).

Solution. By reading the coefficients of s and t we find that the
directions of the two lines are

u = 〈1,−1, 2〉,
v = 〈−1, 1, 2〉.

Since u is not a scalar multiple of v (why?), the two lines are not
parallel.
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It remains to show that they do not intersect. We set r1(t) = r2(s)
and show this leads to a contradiction.

Equating components yields the system

1 + t = 4− s,

− 3− t = −3 + s,

5 + 2t = 6 + 2s.

The first two equations can be rearranged to

s + t = 3,

s + t = 0,

which is clearly impossible. So the lines do not intersect.
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Planes in R
3

A plane in R
3 is determined by two pieces of data:

A point P = (x0, y0, z0) on the plane;

A normal vector n = 〈a, b, c〉.

The normal vector specifies which way the plane “faces.”

Let Q = (x , y , z) be any point on the plane.

The vector
−→
PQ = 〈x − x0, y − y0, z − z0〉 lies in the plane, and is

therefore orthogonal to n.
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So we must have
−→
PQ · n = 0 or

a(x − x0) + b(y − y0) + c(z − z0) = 0.

Remarks.

1 By distributing a, b, c through the parentheses, we can always
put any plane equation into the form

ax + by + cz + d = 0.

2 Conversely, any equation of the form ax + by + cz + d = 0
represents a plane with normal vector

n = 〈a, b, c〉.
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Examples

Example 5

Find an equation for the plane containing P = (1, 2, 3),
Q = (−2, 4, 1) and R = (0, 6,−2).

Solution. We need two things: a point on the plane and the
normal vector.

We have no shortage of points. P = (1, 2, 3) will work.

The vectors
−→
PQ and

−→
PR both lie in the plane.

Therefore n =
−→
PQ ×−→

PR will serve as the normal vector.
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We have

−→
PQ = 〈−2− 1, 4− 2, 1− 3〉 = 〈−3, 2,−2〉,
−→
PR = 〈0− 1, 6− 2,−2− 3〉 = 〈−1, 4,−5〉,

so that

n =
−→
PQ ×−→

PR =

∣
∣
∣
∣
∣
∣

i j k

−3 2 −2
−1 4 −5

∣
∣
∣
∣
∣
∣

= −2i− 13j− 10k = − 〈2, 13, 10〉.

We can drop the negative sign (why?), so that the plane equation
is

2(x − 1) + 13(y − 2) + 10(z − 3) = 0,

or
2x + 13y + 10z − 58 = 0.

Daileda Lines and Planes



Lines Planes

Example 6

Show that the planes 2x − 5y +9z = 6 and 4x − 10y +11z = 0 are
not parallel. Find parametric equations for their line of intersection.

Solution. Two planes are parallel iff their normal vectors are
parallel.

By reading the coefficients, we find that the normals here are

n1 = 〈2,−5, 9〉,
n2 = 〈4,−10, 11〉.

As these are not scalar multiples of one another (why not?), they
are not parallel.
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It follows that the two planes have a common line of intersection.

Since its direction is in both planes, it must be orthogonal to both

normals.

The direction of the line is therefore

n1 × n2 =

∣
∣
∣
∣
∣
∣

i j k

2 −5 9
4 −10 11

∣
∣
∣
∣
∣
∣

= 〈35, 14, 0〉 = 7 〈5, 2, 0〉
︸ ︷︷ ︸

v

.

Note that this means the line will be parallel to the xy -plane.
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We still need a point on the line of intersection.

This requires us to solve both plane equations simultaneously.

Since they are equations in 3 variables, we’ll need to specify one of
them, say x = 0.

The plane equations then become

−5y + 9z = 6,

− 10y + 11z = 0.

Variable elimination yields y = 66
35

and z = 12
7
. So we get the point

(

0,
66

35
,
12

7

)

.
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Our line is therefore given by

r(t) = r0 + tv

=

〈

0,
66

35
,
12

7

〉

+ t〈5, 2, 0〉

=

〈

5t,
66

35
+ 2t,

12

7

〉

,

or in parametric form

x = 5t,

y =
66

35
+ 2t,

z =
12

7
.
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Example 7

Show that the planes 3x − 2y + z = 12 and x + 3y − 5z = 7 are
not parallel, and find the acute angle between them.

Solution. The normal vectors are:

n1 = 〈3,−2, 1〉,
n2 = 〈1, 3,−5〉.

Since these are not scalar multiples of one another (why not?), the
planes are not parallel.

The angle between the planes will be the same as the angle
between the normal vectors.

We can find the latter with the dot product.
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We have

cos θ =
n1 · n2

|n1| · |n2|
=

3 · 1 + (−2) · 3 + 1 · (−5)
√

32 + (−2)2 + 12
√

12 + 32 + (−5)2

=
−8

7
√
10

< 0.

Because this is negative, the angle θ is obtuse, so we actually need
its supplement:

φ = π − θ = π − arccos

( −8

7
√
10

)

≈ 68.8◦.
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