Cylinders and Quadric Surfaces

Ryan C. Daileda

Trinity University
Calculus III

Introduction

We have seen that every linear equation $a x+b y+c z=d$ in (x, y, z) represents a plane in \mathbb{R}^{3}.

A plane is our first example of a surface: a set which is "locally planar."

Every "nice" equation in (x, y, z), such as

$$
(x-3)^{2}+(y+1)^{2}+(z-1)^{2}=25
$$

represents a surface in \mathbb{R}^{3}.
Today we will study two special classes of surfaces: the cylinders and quadric surfaces.

Cylinders

Definition

A cylinder is any surface created by "dragging" a 2D curve along an axis (in \mathbb{R}^{3}).

Examples.

- The surface $y=x^{2}$ is a cylinder in \mathbb{R}^{3} along the z-axis since it is "missing" the variable z.
- The surface $y^{2}+2 z^{2}=1$ is a cylinder in \mathbb{R}^{3} along the x-axis since it is "missing" the variable x.
- The surface $z=\sin (x+y)$ is also a cylinder, although this is harder to identify (see Maple diagram).

Quadric Surfaces

One degree up from the "linear surfaces" (planes) we have:

Definition

A quadric surface is given by an equation of the form

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

where A, B, C, \ldots are real numbers for which at least one of A, B, \ldots, F is nonzero.

Via translations and rotations, one can always reduce the equation of a quadric surface to

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+J=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
A x^{2}+B y^{2}+I z=0 \tag{2}
\end{equation*}
$$

Goal: Describe the graphs of the "generic" quadric surfaces (1) and (2).

Up to signs, there are 6 cases to consider:

- $J=0$: Up to permutation of the variables, these surfaces have the form

$$
\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} .
$$

- $\underline{J \neq 0}$: We can rearrange (1) to one of the following forms:

$$
\begin{aligned}
& * \frac{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 ;}{} \\
& * \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 ; \\
& *-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 ;
\end{aligned}
$$

- $I \neq 0$: Writing $I=1 / c$, there are two possible situations:

$$
\begin{aligned}
& * \frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} ; \\
& * \frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} .
\end{aligned}
$$

Graphs of Quadric Equations

Example 1

Describe the quadric surface given by the equation $z^{2}=\frac{x^{2}}{9}+\frac{y^{2}}{4}$.
Solution. We take cross sections (traces) parallel to the $x y$-plane.
This amounts to setting $z=k$, a constant:

$$
k^{2}=\frac{x^{2}}{9}+\frac{y^{2}}{4} \Leftrightarrow \frac{x^{2}}{(3 k)^{2}}+\frac{y^{2}}{(2 k)^{2}}=1
$$

This is an ellipse with axes $3|k|$ and $2|k|$.
When $k=0$ we just get a point.

As we increase $|k|$, the dimensions $2|k|$ and $3|k|$ grow linearly.

Stacking these together we obtain a cone (see Maple diagram).

Example 2

Describe the quadric surface given by $x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$.
Solution. Again we take cross sections parallel to the $x y$ plane by setting $z=k$ (constant):

$$
x^{2}+\frac{y^{2}}{4}+\frac{k^{2}}{9}=1 \Leftrightarrow \frac{x^{2}}{1-k^{2} / 9}+\frac{y^{2}}{4\left(1-k^{2} / 9\right)}=1
$$

We again obtain ellipses, but this time with axes $\sqrt{1-k^{2} / 9}$ and $2 \sqrt{1-k^{2} / 9}$.

Note that these decrease as we increase $|k|$, equal zero when $|k|=3$, and are imaginary for $|k|>3$.

So we only have cross sections for $|k| \leq 3$. Stacking them together yields an ellipsoid (see Maple diagram).

Example 3

Describe the quadric surface given by $\frac{x^{2}}{4}+y^{2}-\frac{z^{2}}{16}=1$.
Solution. Once again we take cross sections by setting $z=k$.

This time we obtain

$$
\frac{x^{2}}{4}+y^{2}-\frac{k^{2}}{16}=1 \Leftrightarrow \frac{x^{2}}{4\left(1+k^{2} / 16\right)}+\frac{y^{2}}{1+k^{2} / 16}=1 .
$$

Again we have a family of ellipses, this time with dimensions $2 \sqrt{1+k^{2} / 16}$ and $\sqrt{1+k^{2} / 16}$.

They are as small as possible (thought not just a point) when $k=0$, and grow roughly linearly with $|k|$.

Stacking them together we get a one-sheeted hyperboloid (see Maple diagram).

Example 4

Describe the quadric surface given by $-x^{2}-\frac{y^{2}}{9}+\frac{z^{2}}{3}=1$.
Solution. This time when we take cross sections by setting $z=k$ we find that

$$
-x^{2}-\frac{y^{2}}{9}+\frac{k^{2}}{3}=1 \Leftrightarrow \frac{x^{2}}{k^{2} / 3-1}+\frac{y^{2}}{9\left(k^{2} / 3-1\right)}=1
$$

We again have ellipses, this time with axes $\sqrt{k^{2} / 3-1}$ and $3 \sqrt{k^{2} / 3-1}$.
These grow roughly linearly in $|k|$, but are imaginary if $|k|<\sqrt{3}$. So the surface only exists for $|z| \geq \sqrt{3}$, and has two pieces.
Stacking the cross sections we end up with a two-sheeted hyperboloid (see Maple diagram).

Example 5

Describe the quadric surface given by the equation $z=5 x^{2}+7 y^{2}$.

Solution. Setting $z=k$ now gives us

$$
5 x^{2}+7 y^{2}=k \Leftrightarrow \frac{5 x^{2}}{k}+\frac{7 y^{2}}{k}=1
$$

which only has solutions provided $k \geq 0$.
So there are no cross sections below the $x y$ plane, and those above are ellipses with dimensions $\sqrt{k / 5}$ and $\sqrt{k / 7}$.

These grow parabolically as k increases, so stacking them gives us a paraboloid (see Maple diagram).

Example 6

Describe the quadric surface given by the equation $z=x^{2}-y^{2}$.
Solution. Setting $z=k$ we obtain

$$
x^{2}-y^{2}=k \Leftrightarrow \frac{x^{2}}{k}-\frac{y^{2}}{k}=1
$$

With one exception, these are hyperbolas: opening left/right with x-intercepts $\pm \sqrt{k}$ when $k>0$, and opening up/down with y-intercepts $\pm \sqrt{-k}$ when $k<0$.
When $k=0$ we get

$$
x^{2}-y^{2}=0 \Leftrightarrow(x-y)(x+y)=0
$$

which is the pair of lines $x=y$ and $x=-y$.

Stacking these together we end up with a hyperbolic paraboloid (see Maple diagram).

