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Introduction

Today marks the beginning of our study of the calculus of
functions of several variables.

We will start where most treatments of Calculus I begin: with
limits and continuity.

We will see that limits in multiple variables can pose significant
technical (and psychological) challenges.

Once we’ve considered limits thoroughly, we will use them to
define continuity in several variables.
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Recall. For a function f (x) of a single variable,

lim
x→a

f (x) = L (1)

means that as x approaches (but does not equal) a, the values
f (x) approach L.

Somewhat more precisely, we can make f (x) as close to L as we
choose by making x appropriately close to (but not equal to) a.

Here ”close to” refers to distance on the real axis.

Because we have a measure of distance in R
2 (and R

3), the notion
of “close to” makes sense there, too.

This gives us a way of talking about limits of functions of two (or
more) variables.
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Definition

We will write
lim

(x ,y)→(a,b)
f (x , y) = L

to mean that as (x , y) approaches (but does not equal) (a, b), the
values f (x , y) approach L.

Remarks.

We will use → as shorthand for “approaches.”

In terms of distance, (x , y) → (a, b) provided

√

(x − a)2 + (y − b)2 → 0.

We can take limits in R
n for any n by using the appropriate

distance formula.
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Examples

Example 1

Evaluate lim
(x ,y)→(0,0)

x4 − y4

x2 − y2
.

Remark. Notice that (x , y) → (0, 0) means
√

x2 + y2 → 0.

Solution. We have

lim
(x ,y)→(0,0)

x4 − y4

x2 − y2
= lim

(x ,y)→(0,0)

(x2 − y2)(x2 + y2)

x2 − y2

= lim
(x ,y)→(0,0)

x2 + y2

= lim
(x ,y)→(0,0)

(

√

x2 + y2
)2

= 02 = 0.
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In the preceding example we algebraically cancelled the “zero” in
the denominator in order to evaluate the limit, much as in Calc. I.

This isn’t always possible in general, and we have to rely on
“approximate algebra” (inequalities) to get the job done.

Example 2

Evaluate lim
(x ,y)→(0,0)

x2y

x2 + y2
.

Solution. Let’s look at the the function
x2y

x2 + y2
. It is not defined

at (0, 0) because x2 + y2 vanishes there.
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However, no amount of algebra will introduce a factor of x2 + y2

in the numerator (to cancel the denominator).

Instead, we proceed as follows. We have

0 ≤

∣

∣

∣

∣

x2y

x2 + y2

∣

∣

∣

∣

=
x2|y |

x2 + y2
≤

(x2 + y2)|y |

x2 + y2
= |y |.

We now have
x2y

x2 + y2
“squeezed” between 0 and |y |.

Since |y | → 0 as (x , y) → (0, 0), we must have

lim
(x ,y)→(0,0)

x2y

x2 + y2
= 0,

by the Squeeze Theorem.
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Example 3

Evaluate lim
(x ,y)→(0,0)

xy
√

x2 + y2
.

Solution. We have

0 ≤

∣

∣

∣

∣

∣

xy
√

x2 + y2

∣

∣

∣

∣

∣

=
|x | · |y |

√

x2 + y2
=

|x |
√

y2
√

x2 + y2
≤

|x |
√

x2 + y2
√

x2 + y2
= |x |.

That is,
xy

√

x2 + y2
is “squeezed” between 0 and |x |.

Since |x | → 0 as (x , y) → (0, 0), we conclude that

lim
(x ,y)→(0,0)

xy
√

x2 + y2
= 0.
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Remark. In the majority of out limits we will have (x , y) → (0, 0),
simply out of convenience.

Example 4

Show that lim
(x ,y)→(0,0)

y

x2 + y2
does not exist (DNE).

Remark. We have seen that
y

x2 + y2
behaves “strangely” at the

origin, so this shouldn’t be a surprise.

Solution. We approach (0, 0) in two different ways and get
different results.

We will let (x , y) → (0, 0) along the coordinate axes.
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Along the positive x-axis we have y = 0 and x → 0+. Thus

y

x2 + y2
=

0

02 + x2
= 0 → 0.

(Note: This is not a “0
0” limit because x > 0.)

Along the positive y -axis we have x = 0 and y → 0+. Thus

y

x2 + y2
=

y

y2 + 02
=

1

y
→ ∞.

Because 0 6= ∞, the limit DNE.
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Example 5

Show that lim
(x ,y)→(0,0)

2xy

x2 + 2y2
does not exist.

Solution. Again, we approach (0, 0) from two different directions
and get different results.

This time, though, along either the x-axis (y = 0) or the y -axis
(x = 0) we have

2xy

x2 + 2y2
= 0 → 0

as (x , y) → (0, 0) (the numerator is 0 and the denominator is not).
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So we need to check another line through (0, 0). Along y = x we
have

2xy

x2 + 2y2
=

2x2

x2 + 2x2
=

2

3
→

2

3

as (x , y) → (0, 0).

Since 0 6= 2
3 , the limit DNE.

These examples suggest a connection between general limits and
“directional” limits.
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Recall. If f (x) is a function of one variable, then

lim
x→a

f (x) = L ⇔ lim
x→a−

f (x) = lim
x→a+

f (x) = L.

That is, the “two-sided” limit exists iff the two one-sided limits
agree.

There is a similar connection in higher dimensions (more variables),
but the situation is somewhat more complicated.

This is because in one dimension (R) there are only two ways to
approach a point: from the left, or from the right.

But in R
2 (or R3) we can approach a point from an infinitude of

directions (any vector in R
2).

Moreover, we can approach a point in ways that aren’t straight
lines, e.g. we might approach along a parabola, or along a spiral,
or...
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To test whether or not a limit exists “directionally” in R
2 (or R3)

we must test every possible path of approach.

Theorem 1

We have lim
(x ,y)→(a,b)

f (x , y) = L iff f (x , y) → L along every curve

through (a, b).

Remarks.

This is almost never used to show limits exist, because it is
almost impossible to check every curve through a point.

Instead we usually apply the converse: lim
(x ,y)→(a,b)

f (x , y) DNE

iff f (x , y) approaches two different values along two different

curves through (a, b).
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The following example demonstrates why “checking straight lines”
is not sufficient to show that a limit in R

2 exists.

Example 6

Show that lim
(x ,y)→(0,0)

x3y

x6 + y2
DNE.

Solution. Let’s be efficient. Rather than check lines through (0, 0)
randomly, let’s check them “all at once.”

A (non-vertical) line through the origin has equation y = mx for
some m.

If we approach (0, 0) along y = mx we have

x3y

x6 + y2
=

x3(mx)

x6 + (mx)2
=

mx4

x6 +m2x2
=

mx2

x4 +m2
→

0

04 +m2
= 0.
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That is:

x3y

x6 + y2
→ 0 along every straight line through (0, 0)

(strictly speaking, the y -axis still needs to be checked).

However, suppose we approach (0, 0) along the cubic curve y = x3:

x3y

x6 + y2
=

x3 · x3

x6 + (x3)2
=

x6

2x6
=

1

2
→

1

2
.

Since 0 6= 1
2 , the limit DNE.

See Maple for a picture of how a function can behave so
counterintuitively.
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Continuous Functions

Now that we have limits, we can define continuity of functions of
several variables.

A function is continuous at a point provided it “behaves as
expected” there.

Definition

We say that f (x , y) is continuous at (a, b) provided

lim
(x ,y)→(a,b)

f (x , y) = f (a, b).

So if a function is known to be continuous at a certain point, we
can evaluate the limit as we approach that point simply by
evaluation.
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What’s Continuous?

Here’s a partial list of common continuous functions:

Polynomials (e.g. x3 + 3xy + y2) are continuous everywhere.

Rational functions (e.g. x3+y2

2xy−5x+y3 ) are continuous where they
are defined.

Compositions with continuous functions of one variable (e.g.
sin(x2 + y2), e2x−3y , arccos(2x) + 5y) are continuous.

Sums, products, and quotients (where defined) of continuous
functions are continuous.
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Examples

Example 7

Evaluate lim
(x ,y)→(1,5)

ln(x2 + 2y − 3).

Solution. The polynomial x2 + 2y − 3 is continuous everywhere.

Its value at (1, 5) is 12 + 2 · 5− 3 = 8 > 0, which falls in the
domain of the logarithm.

Since the logarithm is continuous where it is defined, the
composition ln(x2 + 2y − 3) is continuous at (1, 5).

Thus

lim
(x ,y)→(1,5)

ln(x2 + 2y − 3) = ln(12 + 2 · 5− 3) = ln 8.
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Example 8

Where is the function

f (x , y) =







x2y

x2 + y2
, (x , y) 6= (0, 0)

0, (x , y) = (0, 0)

continuous?

Solution. The function
x2y

x2 + y2
is rational, so it is continuous

everywhere it is defined: for (x , y) 6= (0, 0).

Therefore f (x , y) is automatically continuous for (x , y) 6= (0, 0).

To test the continuity at (0, 0), we must let (x , y) → (0, 0) and
evaluate the limit.
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Since (x , y) 6= (0, 0) when we take the limit, we have

lim
(x ,y)→(0,0)

f (x , y) = lim
(x ,y)→(0,0)

x2y

x2 + y2
= 0 = f (0, 0),

by an earlier example.

It follows that f (x , y) is continuous at (0, 0), too.

We conclude that f (x , y) is continuous everywhere.

Remark. It’s interesting to note that the function x2y

x2+y2 has a
removable discontinuity at the origin even though we cannot
algebraically cancel the denominator. This never occurs for rational
functions of one variable.
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