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Introduction

Today we will begin studying the differential calculus of functions
of several variables.

We will begin by considering partial derivatives.

As we will see, partial differentiation amounts to differentiating in
each variable separately.

Our main tools will be the single variable differentiation rules from
Calculus I.
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Partial Derivatives

Definition

The partial derivative of f (x , y) with respect to x is

fx(x , y) =
∂f

∂x
= lim

h→0

f (x + h, y)− f (x , y)

h
.

The partial derivative of f (x , y) with respect to y is

fy (x , y) =
∂f

∂y
= lim

h→0

f (x , y + h)− f (x , y)

h
.

Remarks.

fx is simply the “ordinary” derivative of f treating y as a

constant. Likewise for fy .

We use subscripts instead of “prime” notation, and ∂ instead
of d in the Leibniz notation.
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Examples

In the following examples compute fx(x , y) and fy (x , y).

Example 1

f (x , y) = x4y3 + 8x2y

Solution. Treating y as a constant we have

fx(x , y) = 4x3y3 + 16xy ,

and treating x as a constant we have

fy (x , y) = 3x4y2 + 8x2.
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Example 2

f (x , y) = x cos(xy)

Solution. If we hold y constant, we need the product rule and the
chain rule to differentiate in x :

fx(x , y) = cos(xy)− xy sin(xy).

On the other hand if we hold x constant, we only need the chain
rule to differentiate in y :

fy (x , y) = − x2 sin(xy).
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Example 3

f (x , y) = xy

Solution. If we hold y constant, xy is just a power function in x ,
so we can differentiate it with the power rule:

fx(x , y) = yxy−1.

But if we hold x constant, xy is an exponential function in y (with
base x). Thus

fy (x , y) = xy ln x .
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Remarks

The mechanics of differentiating in multiple variables are no
different than those for single variable functions.

The primary difficulty in computing partial derivatives is simply
keeping track of what is “variable” and what is “constant.”

We can define partial derivatives in any number of variables in an
analogous manner: we differentiate in one variable while holding
the others fixed.
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Examples

Example 4

If g(x , y , z) = zexyz , compute gx , gy and gz .

Solution. Treating y and z as constants, the chain rule yields

gx (x , y , z) = yz2exyz .

Likewise, treating x and z as constants we find that

gy (x , y , z) = xz2exyz .

But if we treat x and y as constants, we need the product rule, too:

gz(x , y , z) = exyz + xyzexyz = (1 + xyz)exyz .
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Example 5

If h(x1, x2, . . . , xn) =
√

x21 + x22 + · · · + x2n , compute
∂h

∂xi
.

Solution. Treating variable other that xi as constant we find that

∂h

∂xi
=

1

2

(

x21 + x22 + · · · + x2n
)

−1/2
· 2xi

=
xi

√

x21 + x22 + · · ·+ x2n

.
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Understanding Partial Derivatives

Suppose we are given a function f (x , y).

Given a constant k , the equation y = k represents a vertical plane
parallel to the xz-plane (perpendicular to the y -axis).

Recall that the graph of f is given by z = f (x , y).

These two intersect where z = f (x , k), which is a vertical cross
section of the graph projected to the xz-plane.

The value of fx(x , k) represents the slope of the tangent line to
this cross section.

As we vary k , the cross section changes, making fx a function of
both x and y .
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Similarly, we can interpret fy as the slope of the cross section
z = f (k , y) parallel to the yz-plane (perpendicular to the x-axis).

Put another way:

fx(a, b) = “slope” of the graph of f at the point (a, b, f (a, b))

in the x-direction,

fy (a, b) = “slope” of the graph of f at the point (a, b, f (a, b))

in the y -direction.

More generally:

Partial derivative with
respect to a variable

=
Rate of change in the

direction of that vari-

able.
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Higher Order Partial Derivatives

Partial derivatives are functions of several variables, so have their
own partial derivatives.

Definition

The second order partial derivatives of f (x , y) are:

fxx = (fx)x =
∂

∂x

(

∂f

∂x

)

=
∂2f

∂x2
,

fyy = (fy )y =
∂

∂y

(

∂f

∂y

)

=
∂2f

∂y2
,

fxy = (fx)y =
∂

∂y

(

∂f

∂x

)

=
∂2f

∂y∂x
,

fyx = (fy )x =
∂

∂x

(

∂f

∂y

)

=
∂2f

∂x∂y
.
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Remarks

Subscript notation is read left-to-right.

Leibniz notation is read right-to-left.

fxx and fyy measure concavity of the graph of f in the x and y

directions, respectively.

The mixed partial derivatives fxy and fyx measure the
tendency of the graph to “twist.”

We can talk about second order partial derivatives in any
number of variables: in n variables there are n2 second order
partial derivatives.
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Higher Order Derivatives

In general, if we differentiate f (x , y) n times (with respect to any
combination of x ’s and y ’s) we obtain an nth order partial

derivative.

For example

fyxx = (fyx)x =
∂

∂x

(

∂2f

∂x∂y

)

=
∂3f

∂x2∂y

is a third order mixed partial derivative.

A function of two variables has 2n (potentially distinct) derivatives
of order n.
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Examples

Find all second order partial derivatives of the following.

Example 6

f (x , y) = x4y3 + 8x2y .

Solution. We have seen that

fx(x , y) = 4x3y3 + 16xy and fy (x , y) = 3x4y2 + 8x2.

Taking the partial derivatives of fx yields

fxx(x , y) = 12x2y3 + 16y ,

fxy(x , y) = 12x3y2 + 16x .

Taking the partial derivatives of fy yields

fyx(x , y) = 12x3y2 + 16x ,

fyy (x , y) = 6x4y .
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Example 7

f (x , y) = x cos(xy).

Solution. We have seen that

fx(x , y) = cos(xy)− xy sin(xy) and fy (x , y) = −x2 sin(xy).

Taking the partial derivatives of fx yields

fxx(x , y) = − y sin(xy)− y sin(xy)− xy2 cos(xy)

= −2y sin(xy)− xy2 cos(xy),

fxy(x , y) = − x sin(xy)− x sin(xy)− x2y cos(xy)

= −2x sin(xy)− x2y cos(xy).
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Taking the partial derivatives of fy yields

fyx(x , y) = − 2x sin(xy)− x2y cos(xy),

fyy(x , y) = − x3 cos(xy).

Remarks.

Notice that in both examples we have fxy = fyx .

The somewhat amazing fact is that, under suitable
hypotheses, this is usually true!
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Equality of Mixed Partial Derivatives

Theorem 1 (Clairaut’s Theorem)

If fxy and fyx are continuous, then fxy = fyx .

Remarks.

This result is true for functions in any number of variables.

It is also valid for higher order derivatives. For instance,
provided they are all continuous, one must have

fxxy = fxyx = fyxx .

For the vast majority of the functions we will consider,
Clairaut’s theorem will hold automatically.
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Example 8

If u(r , θ) = erθ sin θ, find
∂3u

∂r2∂θ
.

Solution. Strictly speaking, we are being asked to differentiate first

in θ, then twice in r .

This requires us to use the product rule immediately, and then
continue to differentiate in r , which becomes cumbersome.

Since the partial derivatives of u must all be continuous (why?),
we can appeal to Clairaut’s theorem and instead compute the two
r derivatives first, which is easier.
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Since u(r , θ) = erθ sin θ, we have

ur = θerθ sin θ,

urr = θ2erθ sin θ,

urrθ = 2θerθ sin θ + θ2rerθ sin θ + θ2erθ cos θ

= θerθ(2 sin θ + θr sin θ + θ cos θ).
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