Partial Derivatives

Ryan C. Daileda

Trinity University

Calculus III

Introduction

Today we will begin studying the differential calculus of functions of several variables.

We will begin by considering partial derivatives.

As we will see, partial differentiation amounts to differentiating in each variable separately.

Our main tools will be the single variable differentiation rules from Calculus I.

Partial Derivatives

Definition

The partial derivative of $f(x, y)$ with respect to x is

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

The partial derivative of $f(x, y)$ with respect to y is

$$
f_{y}(x, y)=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Remarks.

- f_{x} is simply the "ordinary" derivative of f treating y as a constant. Likewise for f_{y}.
- We use subscripts instead of "prime" notation, and ∂ instead of d in the Leibniz notation.

Examples

In the following examples compute $f_{x}(x, y)$ and $f_{y}(x, y)$.

Example 1

$$
f(x, y)=x^{4} y^{3}+8 x^{2} y
$$

Solution. Treating y as a constant we have

$$
f_{x}(x, y)=4 x^{3} y^{3}+16 x y
$$

and treating x as a constant we have

$$
f_{y}(x, y)=3 x^{4} y^{2}+8 x^{2}
$$

Example 2

$f(x, y)=x \cos (x y)$

Solution. If we hold y constant, we need the product rule and the chain rule to differentiate in x :

$$
f_{x}(x, y)=\cos (x y)-x y \sin (x y)
$$

On the other hand if we hold x constant, we only need the chain rule to differentiate in y :

$$
f_{y}(x, y)=-x^{2} \sin (x y) .
$$

Example 3

$$
f(x, y)=x^{y}
$$

Solution. If we hold y constant, x^{y} is just a power function in x, so we can differentiate it with the power rule:

$$
f_{x}(x, y)=y x^{y-1}
$$

But if we hold x constant, x^{y} is an exponential function in y (with base x). Thus

$$
f_{y}(x, y)=x^{y} \ln x .
$$

Remarks

The mechanics of differentiating in multiple variables are no different than those for single variable functions.

The primary difficulty in computing partial derivatives is simply keeping track of what is "variable" and what is "constant."

We can define partial derivatives in any number of variables in an analogous manner: we differentiate in one variable while holding the others fixed.

Examples

Example 4

If $g(x, y, z)=z e^{x y z}$, compute g_{x}, g_{y} and g_{z}.
Solution. Treating y and z as constants, the chain rule yields

$$
g_{x}(x, y, z)=y z^{2} e^{x y z}
$$

Likewise, treating x and z as constants we find that

$$
g_{y}(x, y, z)=x z^{2} e^{x y z}
$$

But if we treat x and y as constants, we need the product rule, too:

$$
g_{z}(x, y, z)=e^{x y z}+x y z e^{x y z}=(1+x y z) e^{x y z} .
$$

Example 5

If $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$, compute $\frac{\partial h}{\partial x_{i}}$.

Solution. Treating variable other that x_{i} as constant we find that

$$
\begin{aligned}
\frac{\partial h}{\partial x_{i}} & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{-1 / 2} \cdot 2 x_{i} \\
& =\frac{x_{i}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}}
\end{aligned}
$$

Understanding Partial Derivatives

Suppose we are given a function $f(x, y)$.
Given a constant k, the equation $y=k$ represents a vertical plane parallel to the $x z$-plane (perpendicular to the y-axis).

Recall that the graph of f is given by $z=f(x, y)$.
These two intersect where $z=f(x, k)$, which is a vertical cross section of the graph projected to the $x z$-plane.

The value of $f_{x}(x, k)$ represents the slope of the tangent line to this cross section.

As we vary k, the cross section changes, making f_{x} a function of both x and y.

Similarly, we can interpret f_{y} as the slope of the cross section $z=f(k, y)$ parallel to the $y z$-plane (perpendicular to the x-axis).

Put another way:

$$
\begin{aligned}
f_{x}(a, b)= & \text { "slope" of the graph of } f \text { at the point }(a, b, f(a, b)) \\
& \text { in the } x \text {-direction, } \\
f_{y}(a, b)= & \text { "slope" of the graph of } f \text { at the point }(a, b, f(a, b)) \\
& \text { in the } y \text {-direction. }
\end{aligned}
$$

More generally:

Partial derivative with respect to a variable

Rate of change in the
$=$ direction of that variable.

Higher Order Partial Derivatives

Partial derivatives are functions of several variables, so have their own partial derivatives.

Definition

The second order partial derivatives of $f(x, y)$ are:

$$
\begin{aligned}
& f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
& f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \\
& f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \\
& f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}
\end{aligned}
$$

Remarks

- Subscript notation is read left-to-right.
- Leibniz notation is read right-to-left.
- $f_{x x}$ and $f_{y y}$ measure concavity of the graph of f in the x and y directions, respectively.
- The mixed partial derivatives $f_{x y}$ and $f_{y x}$ measure the tendency of the graph to "twist."
- We can talk about second order partial derivatives in any number of variables: in n variables there are n^{2} second order partial derivatives.

Higher Order Derivatives

In general, if we differentiate $f(x, y) n$ times (with respect to any combination of x 's and y 's) we obtain an nth order partial derivative.

For example

$$
f_{y x x}=\left(f_{y x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial x \partial y}\right)=\frac{\partial^{3} f}{\partial x^{2} \partial y}
$$

is a third order mixed partial derivative.

A function of two variables has 2^{n} (potentially distinct) derivatives of order n.

Examples

Find all second order partial derivatives of the following.

Example 6

$f(x, y)=x^{4} y^{3}+8 x^{2} y$.
Solution. We have seen that

$$
f_{x}(x, y)=4 x^{3} y^{3}+16 x y \text { and } f_{y}(x, y)=3 x^{4} y^{2}+8 x^{2} .
$$

Taking the partial derivatives of f_{x} yields

$$
\begin{aligned}
& f_{x x}(x, y)=12 x^{2} y^{3}+16 y \\
& f_{x y}(x, y)=12 x^{3} y^{2}+16 x .
\end{aligned}
$$

Taking the partial derivatives of f_{y} yields

$$
\begin{aligned}
& f_{y x}(x, y)=12 x^{3} y^{2}+16 x, \\
& f_{y y}(x, y)=6 x^{4} y
\end{aligned}
$$

Example 7

$$
f(x, y)=x \cos (x y)
$$

Solution. We have seen that

$$
f_{x}(x, y)=\cos (x y)-x y \sin (x y) \quad \text { and } \quad f_{y}(x, y)=-x^{2} \sin (x y) .
$$

Taking the partial derivatives of f_{x} yields

$$
\begin{aligned}
f_{x x}(x, y) & =-y \sin (x y)-y \sin (x y)-x y^{2} \cos (x y) \\
& =-2 y \sin (x y)-x y^{2} \cos (x y) \\
f_{x y}(x, y) & =-x \sin (x y)-x \sin (x y)-x^{2} y \cos (x y) \\
& =-2 x \sin (x y)-x^{2} y \cos (x y)
\end{aligned}
$$

Taking the partial derivatives of f_{y} yields

$$
\begin{aligned}
& f_{y x}(x, y)=-2 x \sin (x y)-x^{2} y \cos (x y) \\
& f_{y y}(x, y)=-x^{3} \cos (x y) .
\end{aligned}
$$

Remarks.

- Notice that in both examples we have $f_{x y}=f_{y x}$.
- The somewhat amazing fact is that, under suitable hypotheses, this is usually true!

Equality of Mixed Partial Derivatives

Theorem 1 (Clairaut's Theorem)
If $f_{x y}$ and $f_{y x}$ are continuous, then $f_{x y}=f_{y x}$.

Remarks.

- This result is true for functions in any number of variables.
- It is also valid for higher order derivatives. For instance, provided they are all continuous, one must have

$$
f_{x x y}=f_{x y x}=f_{y x x} .
$$

- For the vast majority of the functions we will consider, Clairaut's theorem will hold automatically.

Example 8

If $u(r, \theta)=e^{r \theta} \sin \theta$, find $\frac{\partial^{3} u}{\partial r^{2} \partial \theta}$.

Solution. Strictly speaking, we are being asked to differentiate first in θ, then twice in r.

This requires us to use the product rule immediately, and then continue to differentiate in r, which becomes cumbersome.

Since the partial derivatives of u must all be continuous (why?), we can appeal to Clairaut's theorem and instead compute the two r derivatives first, which is easier.

Since $u(r, \theta)=e^{r \theta} \sin \theta$, we have

$$
\begin{aligned}
u_{r} & =\theta e^{r \theta} \sin \theta \\
u_{r r} & =\theta^{2} e^{r \theta} \sin \theta \\
u_{r r \theta} & =2 \theta e^{r \theta} \sin \theta+\theta^{2} r e^{r \theta} \sin \theta+\theta^{2} e^{r \theta} \cos \theta \\
& =\theta e^{r \theta}(2 \sin \theta+\theta r \sin \theta+\theta \cos \theta)
\end{aligned}
$$

