Number Theory
FALL 2020

Assignment 1.1
 Due September 2

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercise 2. Let $a, b, c, d \in \mathbb{Z}$. Prove that if $a \mid b$ and $c \mid d$, then $a c \mid b d$.

Exercise 3. Let $a, b \in \mathbb{Z}$ and suppose a is divisor of b. Prove that if $a \neq 0$, then its complementary divisor is unique.

Exercise 4. Let $b \in \mathbb{Z}, b \neq 0$. For $a \in \mathbb{Z}$ define $r(a)$ to be the remainder when a is divided by b. Prove that for all $a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ one has

$$
r\left(a_{1} \cdot r\left(a_{2} a_{3}\right)\right)=r\left(r\left(a_{1} a_{2}\right) \cdot a_{3}\right)=r\left(a_{1} a_{2} a_{3}\right)
$$

