

 $\begin{array}{c} \text{Number Theory} \\ \text{Fall 2020} \end{array}$

Assignment 1.1 Due September 2

Exercise 1. Let $a, b, c \in \mathbb{Z}$. Prove that if a|b and b|c, then a|c.

Exercise 2. Let $a, b, c, d \in \mathbb{Z}$. Prove that if a|b and c|d, then ac|bd.

Exercise 3. Let $a, b \in \mathbb{Z}$ and suppose a is divisor of b. Prove that if $a \neq 0$, then its complementary divisor is unique.

Exercise 4. Let $b \in \mathbb{Z}$, $b \neq 0$. For $a \in \mathbb{Z}$ define r(a) to be the remainder when a is divided by b. Prove that for all $a_1, a_2, a_3 \in \mathbb{Z}$ one has

$$r(a_1 \cdot r(a_2 a_3)) = r(r(a_1 a_2) \cdot a_3) = r(a_1 a_2 a_3).$$