

Number Theory Fall 2020

Assignment 1.2 Due September 2

Exercise 1. Prove that for all $n \in \mathbb{N}$, $15|2^{4n} - 1$. [Suggestion: Factor the polynomial $X^m - 1$.]

Exercise 2. Prove that the square of any integer has the form 3k or 3k + 1. Use this to show that $3a^2 - 1$ is never a perfect square.

Exercise 3. If n is odd, prove that $16|n^4 + 4n^2 + 11$. [Suggestion: Use the fact that 11 = 16 - 5.]

Exercise 4. Use the Euclidean algorithm to compute the following GCDs.

- **a.** (143, 277)
- **b.** (306, 657)
- **c.** (272, 1479)