Number Theory
Assignment 1.2
FALL 2020

Due September 2

Exercise 1. Prove that for all $n \in \mathbb{N}, 15 \mid 2^{4 n}-1$. [Suggestion: Factor the polynomial $X^{m}-1$.]

Exercise 2. Prove that the square of any integer has the form $3 k$ or $3 k+1$. Use this to show that $3 a^{2}-1$ is never a perfect square.

Exercise 3. If n is odd, prove that $16 \mid n^{4}+4 n^{2}+11$. [Suggestion: Use the fact that $11=16-5$.]

Exercise 4. Use the Euclidean algorithm to compute the following GCDs.
a. $(143,277)$
b. $(306,657)$
c. $(272,1479)$

