Exercise 1. Let $a, b, n \in \mathbb{N}$. Prove that if $a^{n}=b^{n}$, then $a=b$. [Suggestion: You can avoid using the FTA by observing that $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)$.]

Exercise 2. Let $m \in \mathbb{R}$. Prove that

$$
\left(\frac{-2 m}{m^{2}+1}, \frac{1-m^{2}}{m^{2}+1}\right)
$$

is a rational point if and only if $m \in \mathbb{Q}$.

Exercise 3. Let

$$
C(\mathbb{Q})=\left\{(X, Y) \mid X, Y \in \mathbb{Q}, X^{2}+Y^{2}=1\right\} .
$$

Prove that the function $\pi: \mathbb{Q} \rightarrow C(\mathbb{Q})$ given by

$$
\pi(m)=\left(\frac{-2 m}{m^{2}+1}, \frac{1-m^{2}}{m^{2}+1}\right)
$$

is a bijection. [Suggestion: Show that, away from $(0,1)$, the inverse is given by $(X, Y) \mapsto$ $\frac{Y-1}{X}$.]

Exercise 4. Let $r, s \in \mathbb{Z}$ with $(r, s)=1, s \neq 0$, and $r \equiv s \equiv 1(\bmod 2)$. Write $r=2 k+1$ and $s=2 \ell+1$. Let $u=k+\ell+1$ and $v=\ell-k$.

$$
\left(\frac{-2 r s}{r^{2}+s^{2}}, \frac{s^{2}-r^{2}}{r^{2}+s^{2}}\right)=\left(\frac{v^{2}-u^{2}}{u^{2}+v^{2}}, \frac{2 u v}{u^{2}+v^{2}}\right),
$$

that the coordinates on the right hand side are reduced, and that $\operatorname{gcd}(u, v)=1$ and $u \not \equiv v$ $(\bmod 2)$.

