Number Theory
Assignment 12.2
FALL 2020
Due November 30

Exercise 1. Given a quaternion $z=a+b i+c j+d k \in \mathbb{H}$ with $a, b, c, d \in \mathbb{R}$, recall that $z^{*}=a-b i-c j-d k$. For $z, w \in \mathbb{H}$ we define their dot product and cross product to be

$$
z \cdot w=\frac{w z^{*}+z w^{*}}{2} \quad \text { and } \quad z \times w=\frac{w z^{*}-z w^{*}}{2}
$$

respectively.
a. Prove that $z \cdot z=a^{2}+b^{2}+c^{2}+d^{2}$.
b. Prove that if $z, w \in \mathbb{H}$ are purely imaginary (i.e. have no real coordinate), then $z \cdot w$ and $z \times w$ agree with the usual dot and cross products of vectors in \mathbb{R}^{3}.

Exercise 2. Show that if $z \in \mathbb{H}$, then $z^{*} z=z z^{*}=N(z)$. Conclude that if $z \neq 0$, then $z^{-1}=z^{*} / N(z)$.

Exercise 3. Show that every nonzero $z \in \mathbb{H}$ has the polar form $z=\rho(\cos \theta+\sin \theta \mathbf{u})$, where $\theta \in \mathbb{R}, \rho=\sqrt{N(z)}, \mathbf{u}$ is purely imaginary, and $N(\mathbf{u})=1$.

Exercise 4. Textbook exercise 13.3.7.

Exercise 5. Textbook exercise 13.3.13.

