Number Theory
Assignment 2.2
FALL 2020
Due September 9

Exercise 1. Let $a, b \in \mathbb{Z}$, not both 0 . Prove that if $x, y \in \mathbb{Z}$ satisfy $a x+b y=(a, b)$, then $(x, y)=1$.

Exercise 2. Show that for any integer $a \in \mathbb{Z},(2 a+1,9 a+4)=1$.

Exercise 3. If $a, b \in Z$ are not both zero, prove that $(2 a-3 b, 4 a-5 b)$ divides b. Conclude that $(2 a+3,4 a+5)=1$.

Exercise 4. If $a, b, n \in \mathbb{N}$, prove that $(a, b)=1$ if and only if $\left(a^{n}, b^{n}\right)=1$.

Exercise 5. Let $a, b, n \in \mathbb{N}$. Prove that $a \mid b$ if and only if $a^{n} \mid b^{n}$. [Suggestion: For the reverse implication, write $a=(a, b) r$ and $b=(a, b) s$ with $(r, s)=1$. Apply the preceding exercise and conclude that $r=1$.]

