

Number Theory Fall 2020 Assignment 2.2 Due September 9

**Exercise 1.** Let  $a, b \in \mathbb{Z}$ , not both 0. Prove that if  $x, y \in \mathbb{Z}$  satisfy ax + by = (a, b), then (x, y) = 1.

**Exercise 2.** Show that for any integer  $a \in \mathbb{Z}$ , (2a + 1, 9a + 4) = 1.

**Exercise 3.** If  $a, b \in Z$  are not both zero, prove that (2a - 3b, 4a - 5b) divides b. Conclude that (2a + 3, 4a + 5) = 1.

**Exercise 4.** If  $a, b, n \in \mathbb{N}$ , prove that (a, b) = 1 if and only if  $(a^n, b^n) = 1$ .

**Exercise 5.** Let  $a, b, n \in \mathbb{N}$ . Prove that a|b if and only if  $a^n|b^n$ . [Suggestion: For the reverse implication, write a = (a, b)r and b = (a, b)s with (r, s) = 1. Apply the preceding exercise and conclude that r = 1.]