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Linear Congruences

Given n ∈ N and a, b ∈ Z, a linear congruence has the form

ax ≡ b (mod n). (1)

Goal: Describe the set of solutions to (1).

Notice that if x0 ∈ Z is a solution to (1) and x1 ≡ x0 (mod n),
then

ax1 ≡ ax0 ≡ b (mod n),

so that x1 is also a solution.

It follows that every integer in the congruence class x0 + nZ solves
(1).

It is therefore natural to describe the solution set in terms of
congruence classes (i.e. as elements of Z/nZ).

Daileda Linear Congruences & CRT



Notice that

ax ≡ b (mod n) ⇔ n|ax − b

⇔ ax − b = ny

⇔ ax − ny = b,

for some y ∈ Z.

The Diophantine equation ax − ny = b can be solved iff (a, n)|b,
in which case

x = r
b

(a, n)
+m

n

(a, n)
, y = · · · ,

where ar + ns = (a, n) and m ∈ Z.

These will be distinct modulo n only for m = 0, 1, 2, . . . , (a, n)− 1.
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We have therefore reached our goal.

Theorem 1

Let n ∈ N and a, b ∈ Z. The linear congruence ax ≡ b (mod n)
has solutions iff (a, n)|b. In this case there are exactly (a, n)
incongruent solutions modulo n, given by

x ≡ r
b

(a, n)
+m

n

(a, n)
(mod n)

for m = 0, 1, 2, . . . , (a, n)− 1, where ar + ns = (a, n).

Remark. The solutions can also be described by the single

congruence

x ≡ r
b

(a, n)

(

mod
n

(a, n)

)

.
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Example 1

Solve the congruence 231x ≡ 228 (mod 345).

Solution. We have (231, 345) = 3 and 3|228, so there are exactly 3
solutions modulo 345.

The Euclidean Algorithm gives

231 · 3− 345 · 2 = 3,

so that

x ≡ 3 ·
228

3
+m

345

3
≡ 228 + 115m (mod 345),

for m = 0, 1, 2. That is,

x ≡ 113, 228, 343 (mod 345).
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The Ring Z/nZ

Fix n ∈ N. We can define two binary operations on Z/nZ. Given
a, b ∈ Z we set

(a + nZ) + (b + nZ) = (a + b) + nZ,

(a + nZ) · (b + nZ) = (ab) + nZ.

These operations are well-defined: they do not depend on which
members of the congruence classes we choose to compute them.

To see this, suppose a+ nZ = c + nZ and b+ nZ = d + nZ. Then
a ≡ c (mod n) and b ≡ d (mod n).

Properties of modular arithmetic then imply that

a+ b ≡ c + d (mod n) and ab ≡ cd (mod n).
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Thus

(a + b) + nZ = (c + d) + nZ and (ab) + nZ = (cd) + nZ,

as needed.

With the operations of congruence class addition and
multiplication, Z/nZ becomes a commutative ring:

Addition and multiplication are associative and commutative
(why?);

There is an additive identity (0 + nZ) and there are additive
inverses (−(a + nZ) = (−a) + nZ);

There is a multiplicative identity (1 + nZ);

Multiplication distributes over addition.
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We can view the linear congruence ax ≡ b (mod n) as an equation

in Z/nZ.

Our main result then states that this equation has exactly (a, n)
solutions in Z/nZ, when (a, n)|b.

There is one particular instance that is worth mentioning
separately.

Corollary 1

Let n ∈ N and a, b ∈ Z. If (a, n) = 1, then ax ≡ b (mod n) has
exactly one solution modulo n.
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Multiplicative Inverses in Z/nZ

Although every element of Z/nZ has an additive inverse, the same
is not true with multiplication.

For instance, the congruence 2x ≡ 1 (mod 4) cannot be solved,
since (2, 4) ∤ 1.

Thus, 2 + 4Z cannot have a multiplicative inverse in Z/4Z.

An element of Z/nZ with a multiplicative inverse is called a unit

modulo n.

We will denote the set of units in Z/nZ by (Z/nZ)×.

According to Theorem 1:

(Z/nZ)× = {a + nZ | (a, n) = 1}.
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Because every congruence class is uniquely represented by a
remainder, it is easy to see that

(Z/2Z)× = {1 + 2Z},

(Z/3Z)× = {1 + 3Z, 2 + 3Z},

(Z/4Z)× = {1 + 4Z, 3 + 4Z},

(Z/5Z)× = {1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z},

(Z/6Z)× = {1 + 6Z, 5 + 6Z}.

In general, if p is a prime, then

(Z/pZ)× = {1 + pZ, 2 + pZ, . . . , (p − 1) + pZ}.
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Multiplicative Inverses and Bézout’s Lemma

Let n ∈ N and a ∈ Z. Suppose (a, n) = 1.

According to Bézout’s Lemma, there exist r , s ∈ Z so that

ra+ sn = 1 ⇒ ra ≡ 1 (mod n)

⇒ (a + nZ)(r + nZ) = 1 + nZ

⇒ (a + nZ)−1 = r + nZ.

That is the coefficient of a in Bézout’s Lemma gives its

multiplicative inverse in Z/nZ.

The Euclidean Algorithm therefore provides us with an efficient
means of computing inverses modulo n.
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Let m, n ∈ N with m|n. Notice that for any a, b ∈ Z:

a ≡ b (mod n) ⇒ n|a − b ⇒ m|a − b ⇒ a ≡ b (mod m).

It follows that the rule

a+ nZ 7→ a +mZ

yields a well-defined function r : Z/nZ → Z/mZ.

It is easy to see that r is a ring homomorphism:

r ((a + nZ) + (b + nZ)) = r(a + nZ) + r(b + nZ),

r ((a + nZ)(b + nZ)) = r(a + nZ)r(b + nZ),

for all a, b ∈ Z (HW).
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A factorization n = m1m2 therefore defines

R : Z/nZ → (Z/m1Z)× (Z/m2Z)

a + nZ 7→ (a +m1Z, a +m2Z).

Notice that

∣

∣(Z/m1Z)× (Z/m2Z)
∣

∣ = m1m2 = n =
∣

∣Z/nZ
∣

∣.

This means R will be a bijection iff it is one-to-one. Is this true?

Suppose that R(a+ nZ) = R(b + nZ). Then

(a +m1Z, a+m2Z) = (b +m1Z, b +m2Z),

which is equivalent to saying that a ≡ b (mod m1) and
a ≡ b (mod m2).
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Thus, m1|a − b and m2|a − b. To conclude that R is injective we
need to be able to conclude that n = m1m2 divides a − b.

This implication fails in general, but if we also assume that
(m1,m2) = 1, it is valid!

To summarize:

Theorem 2

Let m1,m2 ∈ N with (m1,m2) = 1. The map

a +m1m2Z 7→ (a +m1Z, a+m2Z)

is a well defined bijection between Z/m1m2Z and

Z/m1Z× Z/m2Z.
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What does this say at the level of congruences?

Let a1, a2 ∈ Z. Then (a1 +m1Z, a2 +m2Z) ∈ Z/m1Z× Z/m2Z.

Theorem 2 ensures that there is a unique a+m1m2Z ∈ Z/m1m2Z
so that

(a +m1Z, a +m2Z) = (a1 +m1Z, a2 +m2Z).

That is, there is an integer x = a (unique modulo m1m2) which
solves the simultaneous congruences

x ≡ a1 (mod m1),

x ≡ a2 (mod m2).
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This is the Chinese Remainder Theorem.

Theorem 3 (Chinese Remainder Theorem)

Let m1,m2 ∈ Z with (m1,m2) = 1. For any a1, a2 ∈ Z, the system

of congruences

x ≡ a1 (mod m1),

x ≡ a2 (mod m2).

has a unique solution modulo m1m2.

Remarks.

This generalizes to an arbitrary number of pairwise relatively
prime moduli m1,m2, . . . ,mk .

The proof we have given is nonconstructive. We will give a
constructive proof of the more general version shortly.
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We need a preparatory lemma.

Lemma 1

Let a, b, c ∈ Z. If (a, c) = (b, c) = 1, then (ab, c) = 1.

Proof. Use Bézout’s Lemma to write

ar1 + cs1 = br2 + cs2 = 1

for some ri , si ∈ Z.

Then

1 = (ar1 + cs1)(br2 + cs2) = (ab)(r1r2) + c(bs1r2 + ar1s2 + cs1s2).

Since r1r2, bs1r2 + ar1s2 + cs1s2 ∈ Z, this proves that (ab, c) = 1.
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Remark. The lemma immediately implies that

(Z/nZ)× = {a + nZ | (a, n) = 1}

is closed under multiplication of congruence classes.

An easy induction yields the following corollary.

Corollary 2

Let a1, a2, . . . , ar , b ∈ Z. If (ai , b) = 1 for all i , then

(a1a2 · · · ar , b) = 1.
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The Chinese Remainder Theorem Revisited

Let n1, n2, . . . , nr ∈ N with (ni , nj) = 1 for all i 6= j .

Set n = n1n2 · · · nr and Ni = n/niv = n1n2 · · · ni−1ni+1 · · · nr .

By Corollary 2, we have (Ni , ni ) = 1 for all i .

It follows that for each i there exists xi ∈ Z so that
Nixi ≡ 1 (mod ni).

Finally, given arbitrary a1a2, . . . , ar ∈ Z, set

a = a1N1x1 + a2N2x2 + · · ·+ arNrxr .
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Since ni |Nj for j 6= i , ajNjxj ≡ 0 (mod ni ) for sll j 6= i .

Furthermore, aiNixi ≡ ai (mod ni ).

Thus
a = a1N1x1 + a2N2x2 + · · ·+ arNrxr

≡ 0 + 0 + · · ·+ ai + · · ·+ 0 ≡ ai (mod ni)

for any i .

That is, x = a is a solution to the system of simultaneous
congruences

x ≡ a1 (mod n1),

x ≡ a2 (mod n2),

...

x ≡ ar (mod nr ).
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We have therefore given a constructive proof of the existence
portion of the following result.

Theorem 4 (Chinese Remainder Theorem)

Let n1, n2, . . . , nr ∈ N with (ni , nj) = 1 for all i 6= j . For any

a1, a2, . . . , ar ∈ Z the system of congruences

x ≡ a1 (mod n1),

x ≡ a2 (mod n2),

...

x ≡ ar (mod nr ).

has a unique solution modulo n1n2 · · · nr .
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To prove uniqueness of the solution, note that our work so far
shows that the map

Z/n1n2 · · · nrZ → Z/n1Z× Z/n2Z× · · · × Z/nrZ

a + n1n2 · · · nrZ 7→ (a + n1Z, a + n2Z, . . . , a + nrZ)

is surjective.

Because the domain and codomain both have size n1n2 · · · nr , the
pigeonhole principle implies the map is injective as well.

So any two solutions of the system must yield the same element of
Z/n1n2 · · · nrZ, i.e. they must be congruent modulo n1n2 · · · nr .
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Example

Example 2

Solve the system of congruences

2x ≡ 1 (mod 5), 3x ≡ 9 (mod 6),

4x ≡ 1 (mod 7), 5x ≡ 9 (mod 11).

Solution. We solve the congruences individually, then “glue” our
solutions together using the CRT.

If we multiply both sides of the first congruence by 3 it becomes
x ≡ 3 (mod 5).

If we divide by 3 in the second congruence it becomes
x ≡ 3 ≡ 1 (mod 2).
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If we multiply both sides of the third congruence by 2 we obtain
x ≡ 2 (mod 7).

And if we multiply both sides of the final congruence by 2 it
becomes 10x ≡ −x ≡ 18 ≡ 7 (mod 11), or x ≡ −7 ≡ 4 (mod 11).

We therefore have the equivalent system

x ≡ 1 (mod 2), x ≡ 3 (mod 5),

x ≡ 2 (mod 7), x ≡ 4 (mod 11).

Following the proof of the CRT, we set n1 = 2, n2 = 5, n3 = 7 and
n4 = 11.

Then define N1 = 5 · 7 · 11 = 385, N2 = 2 · 7 · 11 = 154,
N3 = 2 · 5 · 11 = 110 and N4 = 2 · 5 · 7 = 70.
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We now need to invert each Ni modulo ni .

Because the moduli are small, we can proceed by trial and error.
We have

N1 = 385 ≡ 1 (mod 2) ⇒ x1 = 1,

N2 = 154 ≡ −1 (mod 5) ⇒ x2 = −1,

N3 = 110 ≡ 5 (mod 7) ⇒ x3 = 3,

N4 = 70 ≡ 4 (mod 11) ⇒ x4 = 3.

Thus, one solution to the system is

a = 1 · 385 · 1 + 3 · 154 · (−1) + 2 · 110 · 3 + 4 · 70 · 3 = 1423,

and the general solution is

x ≡ 1423 ≡ 653 (mod 770) .
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