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Introduction

Groups are ubiquitous in modern mathematics.

We will primarily be interested in applications of groups to the
theory of congruences.

The classical results of Wilson, Fermat and Euler can all be recast
as statements about the abelian group (Z/nZ)×.

The theory of groups is extensive, and we will only develop those
tools that will be useful in the context of elementary number
theory.
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Binary Operations

Definition

Let S be a set. A binary operation on S is a function
· : S × S → S .

Remarks. Given a binary operation · : S × S → S and x , y ∈ S :

We usually use infix notation and write x · y rather than
·(x , y).

Depending on the operation, it is also common to abbreviate
x · y as xy .

Examples. Addition and multiplication are binary operations on
N, Z, Q and R.
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Groups

Definition

A group is a set G together with a binary operation which satisfies:

1. (Associativity) For all a, b, c ∈ G , (ab)c = a(bc).

2. (Identity) There exists an e ∈ G so that ae = ea = a for all
a ∈ G .

3. (Inverses) For each a ∈ G , there exists b ∈ G so that
ab = ba = e.

A group G is called abelian if it also satisfies:

4. (Commutativity) For all a, b ∈ G , ab = ba.

Daileda Groups



Examples

(Z,+) is an abelian group. (Z,×) is not a group.

(R \ {0},×) and (R+,×) are abelian groups.

For any n ∈ N, (Z/nZ,+) and ((Z/nZ)×,×) are (finite)
abelian groups.

The set

GL2)(R) =

{(
a b

c d

) ∣
∣
∣
∣
a, b, c , d ∈ R, ad − bc 6= 0

}

is a non-abelian group under matrix multiplication.

For any nonempty set S , the set Perm(S) of bijections S → S

is a group under function composition, non-abelian if |S | ≥ 3.
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Basic Properties of Groups

Let G be a group.

The identity element in G is unique. If e, e′ ∈ G are both

identities, then
e = ee′ = e′.

Note that we have used the “two-sided-ness” of the identity here.

Given a ∈ G , its inverse is also unique. If b, c ∈ G are both
inverses of a, then

b = be = b(ac) = (ba)c = ec = c .

Note that we have used associativity as well as the “two-sided-
ness” of both inverses and the identity.
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Let a ∈ G . We denote its inverse by a−1.

We set a0 = e and for n ∈ N we define

an = a · a · · · a
︸ ︷︷ ︸

n times

,

a−n = (a−1)n.

With these definitions one can show that we have the familiar laws
of exponents:

am+n = aman,

(am)n = amn,

for all m, n ∈ Z.
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Additive Groups

Sometimes it is convenient to describe a group using additive
notation rather than multiplicative notation.

In this case we write a + b for ab, 0 for e, and −a for a−1.

When using additive notation, we write

a + a+ · · · + a
︸ ︷︷ ︸

n times

= na

for n ∈ N and set (−n)a = − (na). The laws of exponents become

(m + n)a = ma + na,

(mn)a = m(na),

for all m, n ∈ Z.
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Consider the additive group Z/nZ.

For any a+ nZ ∈ Z/nZ we have

n(a+ nZ) = (na) + nZ = 0 + nZ.

Notice that n = |Z/nZ|.

This is no coincidence. It turns out that for any finite group G one
has

a|G | = e for all a ∈ G .

The proof of this fact in general would take us too far afield.

However, when G is abelian we can give a very simple proof.
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Translations

Let G be a group. For a ∈ G define La : G → G by

La(x) = ax for all x ∈ G .

La is called left translation by a.

Lemma 1

Let G be a group. For any a ∈ G, La is a bijection.

Proof. One can easily show that (La)
−1 = La−1 (HW). The result

follows.

Remark. The right translation Ra(x) = xa also defines a bijection
G → G . However, if G is nonabelian, then La 6= Ra, in general.
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Left translation will be the main tool in proving our main result.

Theorem 1

Let G be a finite abelian group. Then for any a ∈ G one has

a|G | = e.

Proof. Let
P =

∏

x∈G

x ,

the product of all of the elements in G .

Because G is abelian, the value of P is independent of how we
choose to order the elements of G .
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Let a ∈ G . Since La : G → G is a bijection,

P =
∏

x∈G

x =
∏

x∈G

La(x) =
∏

x∈G

(ax).

Because G is abelian, in the final product we can factor out one
copy of a for each x ∈ G . That is,

∏

x∈G

(ax) = a|G |
∏

x∈G

x = a|G |P .

Hence, P = a|G |P . Multiplication by P−1 on both sides finally
yields

a|G | = e.
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Fermat’s Little Theorem

Let p ∈ N be prime. Our first nontrivial application of Theorem 1
will be to the multiplicative group

(Z/pZ)× = {a+ pZ : p ∤ a} = {1+ pZ, 2+ pZ, . . . , (p− 1)+ pZ}.

Since
∣
∣(Z/pZ)×

∣
∣ = p − 1, it follows that if p ∤ a, then

(a + pZ)p−1 = ap−1 + pZ = 1 + pZ ⇔ ap−1 ≡ 1 (mod p).

This proves:

Theorem 2 (Fermat’s Little Theorem)

Let p ∈ N be prime and a ∈ Z. If p ∤ a, then ap−1 ≡ 1 (mod p).
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There is an equivalent formulation of Fermat’s theorem that
doesn’t require an additional hypothesis on a.

Corollary 1

Let p ∈ N be prime. For any a ∈ Z, ap ≡ a (mod p).

Proof. If p|a, then p|ap, and hence

a ≡ 0 ≡ ap (mod p).

If p ∤ a, then ap−1 ≡ 1 (mod p) by Fermat’s Little Theorem.

Multiplying both sides of this congruence by a we immediately
obtain ap ≡ a (mod p).
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Examples

Example 1

Find the remainder when 3298 is divided by 7.

Solution. Since 7 ∤ 3, Fermat’s theorem tells us that

36 ≡ 1 (mod 7).

So we reduce the exponent 298 modulo 6:

298 = 49 · 6 + 4.

Thus

3298 = 349·6+4 = (36)49 · 34 ≡ 149 · 34 ≡ (32)2 ≡ 4 (mod 7).

Hence the remainder is 4 .
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Example 2

Let a ∈ Z. Show that if (a, 35) = 1, then a12 ≡ 1 (mod 35).

Solution. It suffices to show that

a12 ≡ 1 (mod 5) and a12 ≡ 1 (mod 7).

(Why?)

If (a, 35) = 1, then 5 ∤ a and 7 ∤ a. By Fermat:

a12 = (a4)3 ≡ 13 ≡ 1 (mod 5),

a12 = (a6)2 ≡ 12 ≡ 1 (mod 7),

which is what we needed to show.
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