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Introduction

Fermat’s Little Theorem yields an interesting primality test: a way
to determine whether or not a given n ∈ N is prime or composite.

The “interesting” part is that it can show n is composite without

actually factoring it.

This is the most important feature of all modern primality tests, as
it averts the need for a (computationally infeasible) number of trial
divisions.
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Recall

Last time we proved the following Corollary to Fermat’s Little
Theorem.

Theorem 1

Let p ∈ N be prime. For any a ∈ Z, ap ≡ a (mod p).

This provides us with our first primality test: given a modulus
n ∈ N and a base a ∈ Z

an 6≡ a (mod n) ⇒ n is composite.

For instance, if n = 6 and a = 2 we have

26 = 64 ≡ 4 6≡ 2 (mod 6),

proving (in a very roundabout way) that 6 must be composite.
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Examples

A somewhat more realistic example is provided by the 60 digit
integer

n = 189620700613125325959116839007\\
395234454467716598457179234021.

Using the repeated squaring algorithm, it takes Maple (running on
my 10-year-old MacBook Pro) 0.008 seconds to report that

2n ≡ 632791764458445479937889492928\\
17672219813629325764242332489 (mod n),

thereby proving that n must be composite.
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It takes Maple 1000 times as long (about 8 seconds) to produce
the actual prime factorization

n = (282174488599599500573849980909)×
(671998030559713968361666935769).

It also took only thousandths of a second for Maple to determine
that the 99 digit integer

n = 706113762068412435747683199935230\\
839398684490635512212296530712933\\
315635896349355029272628861810919

is composite, by showing that 2n 6≡ 2 (mod n).

I crashed Maple trying to actually factor n (it’s the product of two
50 digit primes).
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Pseudoprimes

But this primality test isn’t foolproof: the converse of Fermat’s
Little Theorem is false.

For example, consider the integer n = 341. Since 341 = 11 · 31, n
is composite.

But 210 = 1024 = 3 · 11 · 31 + 1 so that

211 = 2 · 210 ≡ 2 (mod 31) ⇒ 2341 = (211)31 ≡ 231 ≡ 2 (mod 31),

231 = 2(210)3 ≡ 2 (mod 11) ⇒ 2341 = (231)11 ≡ 211 ≡ 2 (mod 11),

by (the corollary to) Fermat’s Little Theorem.

It follows that 2341 ≡ 2 (mod 341), by the CRT.
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Composite integers that pass the Fermat primality test for the base
a = 2 are called pseudoprimes.

The smallest four pseudoprimes are n = 341, 561, 645, 1105. One
can show there are infinitely many.

A composite integer n that passes the Fermat primality test for the
base a (i.e. an ≡ a (mod n)) is called a pseudoprime to the base a.

It is known that there are infinitely many pseudoprimes to any
given base. However, they are very rare: for n ≤ 106 there are only
247 of them.

So if an integer passes the Fermat primality test for a given base, it
is probably prime.
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Carmichael Numbers

One might hope to recover a true primality test by requiring that
an ≡ a (mod n) for all a ∈ Z.

We may as well restrict to the case that (a, n) = 1, since if
(a, n) > 1 (which is easily checked via the EA), then n is
composite.

However, even under these much stronger restrictions, there are
still exceptions. These are known as Carmichael numbers.

The smallest, found in 1910 by Carmichael, is n = 561.
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561 is a Carmichael Number

Notice that 561 = 3 · 11 · 17. Therefore (a, 561) = 1 implies that

(a, 3) = (a, 11) = (a, 17) = 1.

Fermat’s Little Theorem gives

a560 = (a2)280 ≡ 1280 ≡ 1 (mod 3),

a560 = (a10)56 ≡ 156 ≡ 1 (mod 10),

a560 = (a16)35 ≡ 135 ≡ 1 (mod 17).

It follows from the CRT that a560 ≡ 1 (mod 561), and hence
a561 ≡ a (mod 561). So 561 is a Carmichael number.
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How Many Carmichael Numbers Are There?

Carmichael himself conjectured that there are infinitely many of
the numbers that now bear his name.

In 1994, Alford, Granville and Pomerance succeeded in proving
Carmichael’s conjecture.

They showed that if C (n) is the number of Carmichael numbers
less than n, then

C (n) > n2/7,

for all sufficiently large n.

So although there are infinitely many exceptions to the“strong”
Fermat primality test, they are exceedingly rare.
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Torsion in Abelian Groups

We can develop a more complete (though practically less useful)
primality test by analyzing a certain quantity that arose in our
proof of Fermat’s Little Theorem.

Let G be an abelian group and let n ∈ N.

The n-torsion subgroup of G is

G (n) = {a ∈ G | an = e}.

One can show that G (n) is closed under the group operation (and
inversion) in G and is thereby a group in its own right.
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We will primarily be interested in 2-torsion:

G (2) = {a ∈ G | a2 = e} = {a ∈ G | a = a−1}.

That is, G (2) consists of the elements of G that are their own
inverses (like −1 under multiplication).

Recall that our proof of Fermat’s Little Theorem involved
multiplying together all of the elements in a finite abelian group.

The value of this product is directly related to the 2-torsion in the
group as follows.

Lemma 1

Let G be a finite abelian group. Then

∏

x∈G

x =
∏

x∈G(2)

x .
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Proof of Lemma 1

Let a ∈ G . If a 6= a−1, then we can pair a with a−1 in the product
∏

x∈G

x , yielding a factor of e.

The only elements that cannot be paired and cancelled are those
for which a = a−1.

These are precisely the elements of G (2). The result follows.
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We will primarily be interested in applying Lemma 1 to the
multiplicative group

(Z/nZ)× = {a + nZ | (a, n) = 1}.

In terms of congruences, the product of Lemma 1 amounts to

∏

1≤a≤n

(a,n)=1

a (mod n).

We will eventually determine the value of this remainder for
arbitrary n. For now we assume n = p is prime.

In this case we have

∏

1≤a≤n

(a,p)=1

a = (p − 1)!
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If G = (Z/pZ)×, then a + pZ ∈ G (2) if and only if

(a + pZ)2 = 1 + pZ ⇔ a2 ≡ 1 (mod p)

⇔ p|a2 − 1 = (a − 1)(a + 1)

⇔ p|a− 1 or p|a + 1

⇔ a ≡ ±1 (mod p).

Then, according to Lemma 1, we have

(p − 1)! ≡ 1 · (−1) ≡ −1 (mod p).

This is Wilson’s Theorem.

Theorem 2 (Wilson’s Theorem)

Let p ∈ N be prime. Then (p − 1)! ≡ −1 (mod p).
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Conjectured by Wilson around 1770, Theorem 2 was first proven
by Lagrange in 1771.

Lagrange also noted that the converse holds: if n is composite,
then (n − 1)! 6≡ −1 (mod n).

You have already proven this much easier result:

In assignment 3, you showed that (n − 1)! ≡ 0 (mod n) if
n ≥ 6 is composite;

And 3! = 6 ≡ 2 (mod 4).

Wilson’s Theorem therefore provides an infallible (although
computationally intractable) primality test.
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As an aside, we mention that using Wilson’s Theorem, in 1964
Willans derived the formula

pn = 1 +

2n
∑

m=1







n
√
n





m
∑

j=1

[

cos2 π
(j − 1)! + 1

j

]





−1/n






for the nth prime number, where [x ] denotes the greatest integer
less than or equal to x .

Even using modern computers, however, this formula cannot be
used to compute more than the first few primes.

So we turn our attention to an entirely different application of
Wilson’s Theorem.
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√
−1 mod p

Let p ∈ N be prime and consider the quadratic congruence

x2 ≡ −1 (mod p) ⇔ x2 + 1 ≡ 0 (mod p).

Solutions to this congruence can be regarded as square roots of −1
modulo p.

Our final goal for the day is to prove the following classification of
the primes for which this congruence can be solved.

Theorem 3

Let p ∈ N be an odd prime. Then the congruence x2 + 1 ≡ 0
(mod p) has a solution iff p ≡ 1 (mod 4).
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Proof of Theorem 3

For the forward implication, suppose that a2 ≡ −1 (mod p).

Then (a, p) = 1 and Fermat’s Little Theorem gives

1 ≡ ap−1 ≡ (a2)
p−1
2 ≡ (−1)

p−1
2 (mod p).

Since 1 6≡ −1 (mod p) (why?), this implies that p−1
2 is even. That

is,
p − 1

2
= 2k ⇒ p − 1 = 4k ⇒ p ≡ 1 (mod 4).
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For the reverse implication we first notice that

(p − 1)! = 1 · 2 · · ·
(

p − 1

2

)(

p + 1

2

)

· · · (p − 2)(p − 1)

= 1 · 2 · · ·
(

p − 1

2

)(

p − p − 1

2

)

· · · (p − 2)(p − 1)

≡ (−1)
p−1
2

((

p − 1

2

)

!

)2

(mod p).

Therefore, by Wilson’s Theorem,
((

p − 1

2

)

!

)2

≡ (−1)
p−1
2

+1 ≡ (−1)
p+1
2 (mod p).

If p ≡ 1 (mod 4), then

p + 1 ≡ 2 (mod 4) ⇔ p + 1

2
≡ 1 (mod 2).
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That is, p+1
2 is odd. Thus

((

p − 1

2

)

!

)2

≡ − 1 (mod p),

so that x =
(

p−1
2

)

! solves x2 ≡ −1 (mod p).

Remarks.

Note that the proof we have given is, in principle, constructive.

This result is intimately connected with the splitting of p in
the number field Q(

√
−1).

We will give a somewhat less ad hoc proof using primitive

roots later.
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Examples

The smallest prime that is congruent to 1 modulo 4 is p = 5.
According to our proof

x = (
5− 1

2
)! = 2! = 2

solves x2 ≡ −1 (mod 5), which is easily checked.

The next p ≡ 1 (mod 4) is p = 13. Here we need

x =

(

13− 1

2

)

! = 6! = 30 · 12 · 2 ≡ 4 · (−1) · 2 ≡ 5 (mod 13).

And, indeed, 52 = 25 ≡ −1 (mod 13).
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