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Recall

Let G be a finite abelian group. For any a € G, al¢l = e.

Taking G = (Z/pZ)* for a prime p, we deduced Fermat's Little
Theorem as a corollary.

The analogue of Fermat's Little Theorem for an arbitrary modulus
n € N is known as Euler’s Theorem.
To state it, we first need a definition.

Definition

For n € N, Euler’s totient function is defined by
w(n) = |(Z/nZ)*| = |{a+ nZ|(a,n) = 1}|
=|{1<a<n|(a,n) =1}
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SETES

@ For any prime p, ¢(p) = p— 1.
@ Since every integer is coprime to 1, we have (1) = 1.
@ Direct computation gives:
p(4) =2, ¢(6) =2, »(8) =4, ¢(9) =6,
©(10) = 4, ¢(12) =4, p(14) =6, ¢(15) =8.

@ Because (a,2") =1 if and only if a is odd,

p(2M) =2"/2=2"".
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Euler's Theorem

We can now state and prove our main result.

For any n € N, if (a,n) = 1, then a¥(") =1 (mod n).

Proof. If (a,n) =1, then a+ nZ € (Z/nZ)*.

Since (Z/nZ)* has order (n) (by definition),
1+nZ=(a+ nZ)‘p(") =a%¥(n 4 nZ,

according to Theorem 1.

But this is equivalent to a#(") =1 (mod n). O
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It follows, for instance, that if a is odd and not divisible by 7, then

a® =1 (mod 14).

And if (a,15) = 1, then
a® =1 (mod 15).

And if n € N and a is odd, then
22" =1 (mod 27).

Remark. One can use induction to establish the stronger
conclusion that, in fact,
2n—2

a® =1 (mod2")

for all n > 3, which has interesting consequences...
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Properties

The function ¢(n) has a number of important properties.

—1

Let p € N be prime. For any n € N, ¢(p") = p" — p"

Proof. A natural number a < p" is coprime to p" iff p 1 a.
Equivalently, a < p” is not coprime to p” iff a = pk for some k.

Since kp < p" iff k < p"~ !, there are exactly p"~! — 1 choices for
k, and hence for a.

So the number of 1 < a < p” coprime to p” is given by

(pn _ 1) _ (pn—l _ 1) — pn _ pn—l‘
O



Isomorphisms

The totient function enjoys a useful property known as
multiplicativity.

To understand the multiplicative nature of ¢ we need to take a
slight detour.

Definition

Let Ry and Ry be rings. A (ring) isomorphism between R; and R,
is a bijective function f : Ry — R» which satisfies:

1. f(a+ b) = f(a)+ f(b);
2. f(ab) = f(a)f(b),
for all a,b € Ry.
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Remarks

One can show that if f : Rf — Ry is an isomorphism of rings, then
f(ORl) = 0R2 and f(lRl) = ]-R2-

The inverse of a ring isomorphism f : Ry — R is a also an
isomorphism (in the reverse direction).

If there is an isomorphism f : Ry — R», we say that R; and R, are
isomorphic.

Isomorphic rings are “the same.” Any ring-theoretic property
satisfied by R; is automatically satisfied by R».
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Products of Rings

We require one more purely ring-theoretic construction.

Definition
Let Ry and Ry be rings. Their direct product is the set R} X R
endowed with the coordinate-wise operations

(al, bl) -+ (32, bz) = (31 + ap, b1 + bz),
(a1, b1) - (a2, b2) = (a1a2, b1 by),

for all a1,a> € Ry and by, by € R».
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Theorem 4

If Ry and R are rings, then the direct product Ry x Ry is also a
ring.

Proof. Exercise. O
We have already encountered ring isomorphisms and product rings.

Suppose m, n € N are relatively prime. The CRT asserts that that
map
R: Z/mnZ — (Z/mZ) x (Z/nZ),
a+ mnZ— (a+ mZ,a+ nZ),

is a well-defined bijection.
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The map R is also a ring isomorphism. For instance, if a,b € Z,
then

R((a+ mnZ)+(b+ mnZ)) = R((a + b) + mnZ)
= ((a+ b) + mZ,(a+ b) + nZ)
((a+ mZ) + (b+ mZ),(a+ nZ)+ (b+ nZ))
= (a+mZ,a+ nZ)+ (b+ mZ,b+ nZ)
R(a+ mnZ) + R(b+ mnZ),

proving that R preserves addition.

It follows that R provides a ring isomorphism

‘Z/ng ~(Z/mZ) x (Z/nZ) for (m,n)=1 ‘
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The connection to Euler’s totient function is provided by the pair
of results.

If Ry and Ry are rings, then (R1 x Rp)* = R x RY.

Proof (Sketch). Since the identity in Ry x Ry is (1g,,1g,), one can
easily show that

(a,b)"t = (a71,b7).

The result follows. O
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If f : Ry — Ry is an isomorphism of rings, then f| : (R1)* — (R2)*
is a multiplication preserving bijection (an isomorphism of groups).

Proof (Sketch). Every element of R» has the form f(a) for some
a € Ry, and for every a,b € Ry,

1R2 = f(]-Rl) = f(ab) = f(a)f(b)

holds iff a € R iff f(a) € Ry". O

A few remarks aside, we're ready to move on.
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Remarks

One can form the direct product of any number (or indexed
collection) of rings in an analogous manner, by simply performing
addition and multiplication coordinate-wise.

Theorem 5 still holds in this more general setting: the unit group
in the product is the product of the unit groups.

Applied in this setting, if nj € N are pairwise coprime, the CRT
and Lemma 2 provide an isomorphism

(Z/niny -+ nZ)* 2 (Z)mZ)* X (Z/n2Z)* x -+ x (Z/nZ)*.
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Let p1,p2,...,pr € N be distinct primes and e;,e,...,e € N,
For i # j, the FTA implies that (pf",pfj) =1.
It follows that there is an isomorphism

(Z/p5p5: - D) = (T/p§T)* x (Z/pSL)* x -+ x (Z/pET)".
This immediately implies that

o(pr' Py -+ pe) = w(p)e(P3?) - - w(pfr).

This is what we mean when we say that ¢ is multiplicative.
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We arrive at the following formula for ¢.

Theorem 5
Let n € N. Then

ot =TT+ ) =] (1-3):

pln

where both products run over the prime divisors of n, and e,
denotes the exponent of p occurring in the canonical form of n.

Remarks.

@ Remembering that the empty product equals 1 by caveat,
both formulae are automatically valid for n = 1.

@ [t is often more convenient to use the equivalent form
pep _ pep—l ep 1( _ 1)
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Proof of Theorem 5

Since n = Hpe", the multiplicativity of ¢ and Theorem 3

pln
immediately imply that

ey = |]]r*] = Hw(f")
= H(pe" —p*h) = Hpe" (1 — %)
— n]} <1 — %) :

O
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We have

p(15) = ¢(3-5) = ¢(3)¥(5) =(3—-1)(5-1) =38

and

©(98) = p(2-7%) = p(p(7?) = (2 —1) - 7(7 — 1) = 42
and
((18000000) = (2 -9 10°) = ©(27)p(3%)(5°)
=2"12-1)-3*71(3-1)-5°7(5 - 1)
—26.3.9.55.92
= 48 -10° = 4800000.
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