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Recall

Theorem 1

Let G be a finite abelian group. For any a ∈ G, a|G | = e.

Taking G = (Z/pZ)× for a prime p, we deduced Fermat’s Little
Theorem as a corollary.

The analogue of Fermat’s Little Theorem for an arbitrary modulus
n ∈ N is known as Euler’s Theorem.

To state it, we first need a definition.

Definition

For n ∈ N, Euler’s totient function is defined by

ϕ(n) =
∣

∣(Z/nZ)×
∣

∣ =
∣

∣{a + nZ | (a, n) = 1}
∣

∣

=
∣

∣{1 ≤ a < n | (a, n) = 1}
∣

∣.
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Examples

For any prime p, ϕ(p) = p − 1.

Since every integer is coprime to 1, we have ϕ(1) = 1.

Direct computation gives:

ϕ(4) = 2, ϕ(6) = 2, ϕ(8) = 4, ϕ(9) = 6,

ϕ(10) = 4, ϕ(12) = 4, ϕ(14) = 6, ϕ(15) = 8.

Because (a, 2n) = 1 if and only if a is odd,

ϕ(2n) = 2n/2 = 2n−1.
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Euler’s Theorem

We can now state and prove our main result.

Theorem 2

For any n ∈ N, if (a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Proof. If (a, n) = 1, then a+ nZ ∈ (Z/nZ)×.

Since (Z/nZ)× has order ϕ(n) (by definition),

1 + nZ = (a + nZ)ϕ(n) = aϕ(n) + nZ,

according to Theorem 1.

But this is equivalent to aϕ(n) ≡ 1 (mod n).
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It follows, for instance, that if a is odd and not divisible by 7, then

a6 ≡ 1 (mod 14).

And if (a, 15) = 1, then

a8 ≡ 1 (mod 15).

And if n ∈ N and a is odd, then

a2
n−1

≡ 1 (mod 2n).

Remark. One can use induction to establish the stronger
conclusion that, in fact,

a2
n−2

≡ 1 (mod 2n)

for all n ≥ 3, which has interesting consequences...
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Properties

The function ϕ(n) has a number of important properties.

Theorem 3

Let p ∈ N be prime. For any n ∈ N, ϕ(pn) = pn − pn−1.

Proof. A natural number a < pn is coprime to pn iff p ∤ a.

Equivalently, a < pn is not coprime to pn iff a = pk for some k .

Since kp < pn iff k < pn−1, there are exactly pn−1 − 1 choices for
k , and hence for a.

So the number of 1 ≤ a < pn coprime to pn is given by

(pn − 1)− (pn−1 − 1) = pn − pn−1.
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Isomorphisms

The totient function enjoys a useful property known as
multiplicativity.

To understand the multiplicative nature of ϕ we need to take a
slight detour.

Definition

Let R1 and R2 be rings. A (ring) isomorphism between R1 and R2

is a bijective function f : R1 → R2 which satisfies:

1. f (a + b) = f (a) + f (b);

2. f (ab) = f (a)f (b),

for all a, b ∈ R1.
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Remarks

One can show that if f : R1 → R2 is an isomorphism of rings, then
f (0R1

) = 0R2
and f (1R1

) = 1R2
.

The inverse of a ring isomorphism f : R1 → R2 is a also an
isomorphism (in the reverse direction).

If there is an isomorphism f : R1 → R2, we say that R1 and R2 are
isomorphic.

Isomorphic rings are “the same.” Any ring-theoretic property
satisfied by R1 is automatically satisfied by R2.
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Products of Rings

We require one more purely ring-theoretic construction.

Definition

Let R1 and R2 be rings. Their direct product is the set R1 × R2

endowed with the coordinate-wise operations

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1) · (a2, b2) = (a1a2, b1b2),

for all a1, a2 ∈ R1 and b1, b2 ∈ R2.
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Theorem 4

If R1 and R2 are rings, then the direct product R1 × R2 is also a
ring.

Proof. Exercise.

We have already encountered ring isomorphisms and product rings.

Suppose m, n ∈ N are relatively prime. The CRT asserts that that
map

R : Z/mnZ → (Z/mZ)× (Z/nZ),

a+mnZ 7→ (a +mZ, a + nZ),

is a well-defined bijection.
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The map R is also a ring isomorphism. For instance, if a, b ∈ Z,
then

R((a +mnZ)+(b +mnZ)) = R((a + b) +mnZ)

= ((a + b) +mZ, (a + b) + nZ)

= ((a +mZ) + (b +mZ), (a + nZ) + (b + nZ))

= (a +mZ, a+ nZ) + (b +mZ, b + nZ)

= R(a+mnZ) + R(b +mnZ),

proving that R preserves addition.

It follows that R provides a ring isomorphism

Z/mnZ ∼= (Z/mZ)× (Z/nZ) for (m, n) = 1 .
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The connection to Euler’s totient function is provided by the pair
of results.

Lemma 1

If R1 and R2 are rings, then (R1 × R2)
× = R×

1 × R×
2 .

Proof (Sketch). Since the identity in R1 × R2 is (1R1
, 1R2

), one can
easily show that

(a, b)−1 = (a−1, b−1).

The result follows.
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Lemma 2

If f : R1 → R2 is an isomorphism of rings, then f | : (R1)
× → (R2)

×

is a multiplication preserving bijection (an isomorphism of groups).

Proof (Sketch). Every element of R2 has the form f (a) for some
a ∈ R1, and for every a, b ∈ R1,

1R2
= f (1R1

) = f (ab) = f (a)f (b)

holds iff a ∈ R×
1 iff f (a) ∈ R×

2 .

A few remarks aside, we’re ready to move on.
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Remarks

One can form the direct product of any number (or indexed
collection) of rings in an analogous manner, by simply performing
addition and multiplication coordinate-wise.

Theorem 5 still holds in this more general setting: the unit group
in the product is the product of the unit groups.

Applied in this setting, if ni ∈ N are pairwise coprime, the CRT
and Lemma 2 provide an isomorphism

(Z/n1n2 · · · nrZ)
× ∼= (Z/n1Z)

× × (Z/n2Z)
× × · · · × (Z/nrZ)

×.
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Let p1, p2, . . . , pr ∈ N be distinct primes and e1, e2, . . . , er ∈ N.

For i 6= j , the FTA implies that (peii , p
ej
j ) = 1.

It follows that there is an isomorphism

(Z/pe11 pe22 · · · perr Z)× ∼= (Z/pe11 Z)×× (Z/pe22 Z)××· · ·× (Z/perr Z)×.

This immediately implies that

ϕ(pe11 pe22 · · · perr ) = ϕ(pe11 )ϕ(pe22 ) · · ·ϕ(perr ).

This is what we mean when we say that ϕ is multiplicative.

Daileda Euler’s Theorem



We arrive at the following formula for ϕ.

Theorem 5

Let n ∈ N. Then

ϕ(n) =
∏

p|n

(pep − pep−1) = n
∏

p|n

(

1−
1

p

)

,

where both products run over the prime divisors of n, and ep
denotes the exponent of p occurring in the canonical form of n.

Remarks.

Remembering that the empty product equals 1 by caveat,
both formulae are automatically valid for n = 1.

It is often more convenient to use the equivalent form
pep − pep−1 = pep−1(p − 1).
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Proof of Theorem 5

Since n =
∏

p|n

pep , the multiplicativity of ϕ and Theorem 3

immediately imply that

ϕ(n) = ϕ





∏

p|n

pep



 =
∏

p|n

ϕ(pep )

=
∏

p|n

(pep − pep−1) =
∏

p|n

pep
(

1−
1

p

)

= n
∏

p|n

(

1−
1

p

)

.
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Examples

We have

ϕ(15) = ϕ(3 · 5) = ϕ(3)ϕ(5) = (3− 1)(5− 1) = 8

and

ϕ(98) = ϕ(2 · 72) = ϕ(2)ϕ(72) = (2− 1) · 7(7 − 1) = 42

and

ϕ(18000000) = ϕ(2 · 9 · 106) = ϕ(27)ϕ(32)ϕ(56)

= 27−1(2− 1) · 32−1(3− 1) · 56−1(5− 1)

= 26 · 3 · 2 · 55 · 22

= 48 · 105 = 4800000.
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