Euler's Theorem

Ryan C. Daileda

Trinity University

Number Theory

Recall

Theorem 1

Let G be a finite abelian group. For any $a \in G, a^{|G|}=e$.
Taking $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$for a prime p, we deduced Fermat's Little Theorem as a corollary.
The analogue of Fermat's Little Theorem for an arbitrary modulus $n \in \mathbb{N}$ is known as Euler's Theorem.
To state it, we first need a definition.

Definition

For $n \in \mathbb{N}$, Euler's totient function is defined by

$$
\begin{aligned}
\varphi(n) & =\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=|\{a+n \mathbb{Z} \mid(a, n)=1\}| \\
& =|\{1 \leq a<n \mid(a, n)=1\}| .
\end{aligned}
$$

Examples

- For any prime $p, \varphi(p)=p-1$.
- Since every integer is coprime to 1 , we have $\varphi(1)=1$.
- Direct computation gives:

$$
\begin{aligned}
\varphi(4) & =2, \quad \varphi(6)=2, \quad \varphi(8)=4, \quad \varphi(9)=6 \\
\varphi(10) & =4, \varphi(12)=4, \quad \varphi(14)=6, \varphi(15)=8
\end{aligned}
$$

- Because $\left(a, 2^{n}\right)=1$ if and only if a is odd,

$$
\varphi\left(2^{n}\right)=2^{n} / 2=2^{n-1}
$$

Euler's Theorem

We can now state and prove our main result.

Theorem 2

For any $n \in \mathbb{N}$, if $(a, n)=1$, then $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof. If $(a, n)=1$, then $a+n \mathbb{Z} \in(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Since $(\mathbb{Z} / n \mathbb{Z})^{\times}$has order $\varphi(n)$ (by definition),

$$
1+n \mathbb{Z}=(a+n \mathbb{Z})^{\varphi(n)}=a^{\varphi(n)}+n \mathbb{Z}
$$

according to Theorem 1.
But this is equivalent to $a^{\varphi(n)} \equiv 1(\bmod n)$.

It follows, for instance, that if a is odd and not divisible by 7 , then

$$
a^{6} \equiv 1(\bmod 14)
$$

And if $(a, 15)=1$, then

$$
a^{8} \equiv 1(\bmod 15)
$$

And if $n \in \mathbb{N}$ and a is odd, then

$$
a^{2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)
$$

Remark. One can use induction to establish the stronger conclusion that, in fact,

$$
a^{2^{n-2}} \equiv 1\left(\bmod 2^{n}\right)
$$

for all $n \geq 3$, which has interesting consequences...

Properties

The function $\varphi(n)$ has a number of important properties.

Theorem 3

Let $p \in \mathbb{N}$ be prime. For any $n \in \mathbb{N}, \varphi\left(p^{n}\right)=p^{n}-p^{n-1}$.

Proof. A natural number $a<p^{n}$ is coprime to p^{n} iff $p \nmid a$.
Equivalently, $a<p^{n}$ is not coprime to p^{n} iff $a=p k$ for some k.
Since $k p<p^{n}$ iff $k<p^{n-1}$, there are exactly $p^{n-1}-1$ choices for k, and hence for a.
So the number of $1 \leq a<p^{n}$ coprime to p^{n} is given by

$$
\left(p^{n}-1\right)-\left(p^{n-1}-1\right)=p^{n}-p^{n-1}
$$

Isomorphisms

The totient function enjoys a useful property known as multiplicativity.

To understand the multiplicative nature of φ we need to take a slight detour.

Definition

Let R_{1} and R_{2} be rings. A (ring) isomorphism between R_{1} and R_{2} is a bijective function $f: R_{1} \rightarrow R_{2}$ which satisfies:

1. $f(a+b)=f(a)+f(b)$;
2. $f(a b)=f(a) f(b)$,
for all $a, b \in R_{1}$.

Remarks

One can show that if $f: R_{1} \rightarrow R_{2}$ is an isomorphism of rings, then $f\left(0_{R_{1}}\right)=0_{R_{2}}$ and $f\left(1_{R_{1}}\right)=1_{R_{2}}$.

The inverse of a ring isomorphism $f: R_{1} \rightarrow R_{2}$ is a also an isomorphism (in the reverse direction).

If there is an isomorphism $f: R_{1} \rightarrow R_{2}$, we say that R_{1} and R_{2} are isomorphic.

Isomorphic rings are "the same." Any ring-theoretic property satisfied by R_{1} is automatically satisfied by R_{2}.

Products of Rings

We require one more purely ring-theoretic construction.

Definition

Let R_{1} and R_{2} be rings. Their direct product is the set $R_{1} \times R_{2}$ endowed with the coordinate-wise operations

$$
\begin{aligned}
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & =\left(a_{1}+a_{2}, b_{1}+b_{2}\right), \\
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right) & =\left(a_{1} a_{2}, b_{1} b_{2}\right),
\end{aligned}
$$

for all $a_{1}, a_{2} \in R_{1}$ and $b_{1}, b_{2} \in R_{2}$.

Theorem 4

If R_{1} and R_{2} are rings, then the direct product $R_{1} \times R_{2}$ is also a ring.

Proof. Exercise.

We have already encountered ring isomorphisms and product rings.

Suppose $m, n \in \mathbb{N}$ are relatively prime. The CRT asserts that that map

$$
\begin{aligned}
R: & \mathbb{Z} / m n \mathbb{Z} \rightarrow(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z}), \\
& a+m n \mathbb{Z} \mapsto(a+m \mathbb{Z}, a+n \mathbb{Z}),
\end{aligned}
$$

is a well-defined bijection.

The map R is also a ring isomorphism. For instance, if $a, b \in \mathbb{Z}$, then

$$
\begin{aligned}
R((a+m n \mathbb{Z})+ & (b+m n \mathbb{Z}))=R((a+b)+m n \mathbb{Z}) \\
& =((a+b)+m \mathbb{Z},(a+b)+n \mathbb{Z}) \\
& =((a+m \mathbb{Z})+(b+m \mathbb{Z}),(a+n \mathbb{Z})+(b+n \mathbb{Z})) \\
& =(a+m \mathbb{Z}, a+n \mathbb{Z})+(b+m \mathbb{Z}, b+n \mathbb{Z}) \\
& =R(a+m n \mathbb{Z})+R(b+m n \mathbb{Z}),
\end{aligned}
$$

proving that R preserves addition.

It follows that R provides a ring isomorphism

$$
\mathbb{Z} / m n \mathbb{Z} \cong(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z}) \quad \text { for } \quad(m, n)=1
$$

The connection to Euler's totient function is provided by the pair of results.

Lemma 1

If R_{1} and R_{2} are rings, then $\left(R_{1} \times R_{2}\right)^{\times}=R_{1}^{\times} \times R_{2}^{\times}$.

Proof (Sketch). Since the identity in $R_{1} \times R_{2}$ is $\left(1_{R_{1}}, 1_{R_{2}}\right)$, one can easily show that

$$
(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)
$$

The result follows.

Lemma 2

If $f: R_{1} \rightarrow R_{2}$ is an isomorphism of rings, then $f \mid:\left(R_{1}\right)^{\times} \rightarrow\left(R_{2}\right)^{\times}$ is a multiplication preserving bijection (an isomorphism of groups).

Proof (Sketch). Every element of R_{2} has the form $f(a)$ for some $a \in R_{1}$, and for every $a, b \in R_{1}$,

$$
1_{R_{2}}=f\left(1_{R_{1}}\right)=f(a b)=f(a) f(b)
$$

holds iff $a \in R_{1}^{\times}$iff $f(a) \in R_{2}^{\times}$.

A few remarks aside, we're ready to move on.

Remarks

One can form the direct product of any number (or indexed collection) of rings in an analogous manner, by simply performing addition and multiplication coordinate-wise.

Theorem 5 still holds in this more general setting: the unit group in the product is the product of the unit groups.

Applied in this setting, if $n_{i} \in \mathbb{N}$ are pairwise coprime, the CRT and Lemma 2 provide an isomorphism

$$
\left(\mathbb{Z} / n_{1} n_{2} \cdots n_{r} \mathbb{Z}\right)^{\times} \cong\left(\mathbb{Z} / n_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / n_{2} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / n_{r} \mathbb{Z}\right)^{\times}
$$

Let $p_{1}, p_{2}, \ldots, p_{r} \in \mathbb{N}$ be distinct primes and $e_{1}, e_{2}, \ldots, e_{r} \in \mathbb{N}$.
For $i \neq j$, the FTA implies that $\left(p_{i}^{e_{i}}, p_{j}^{e_{j}}\right)=1$.
It follows that there is an isomorphism
$\left(\mathbb{Z} / p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} \mathbb{Z}\right)^{\times} \cong\left(\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / p_{2}^{e_{2}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{r}^{e_{r}} \mathbb{Z}\right)^{\times}$.

This immediately implies that

$$
\varphi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}\right)=\varphi\left(p_{1}^{e_{1}}\right) \varphi\left(p_{2}^{e_{2}}\right) \cdots \varphi\left(p_{r}^{e_{r}}\right)
$$

This is what we mean when we say that φ is multiplicative.

We arrive at the following formula for φ.

Theorem 5

Let $n \in \mathbb{N}$. Then

$$
\varphi(n)=\prod_{p \mid n}\left(p^{e_{p}}-p^{e_{p}-1}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right),
$$

where both products run over the prime divisors of n, and e_{p} denotes the exponent of p occurring in the canonical form of n.

Remarks.

- Remembering that the empty product equals 1 by caveat, both formulae are automatically valid for $n=1$.
- It is often more convenient to use the equivalent form $p^{e_{p}}-p^{e_{p}-1}=p^{e_{p}-1}(p-1)$.

Proof of Theorem 5

Since $n=\prod p^{e_{p}}$, the multiplicativity of φ and Theorem 3

$$
p \mid n
$$

immediately imply that

$$
\begin{aligned}
\varphi(n) & =\varphi\left(\prod_{p \mid n} p^{e_{p}}\right)=\prod_{p \mid n} \varphi\left(p^{e_{p}}\right) \\
& =\prod_{p \mid n}\left(p^{e_{p}}-p^{e_{p}-1}\right)=\prod_{p \mid n} p^{e_{p}}\left(1-\frac{1}{p}\right) \\
& =n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

Examples

We have

$$
\varphi(15)=\varphi(3 \cdot 5)=\varphi(3) \varphi(5)=(3-1)(5-1)=8
$$

and

$$
\varphi(98)=\varphi\left(2 \cdot 7^{2}\right)=\varphi(2) \varphi\left(7^{2}\right)=(2-1) \cdot 7(7-1)=42
$$

and

$$
\begin{aligned}
\varphi(18000000) & =\varphi\left(2 \cdot 9 \cdot 10^{6}\right)=\varphi\left(2^{7}\right) \varphi\left(3^{2}\right) \varphi\left(5^{6}\right) \\
& =2^{7-1}(2-1) \cdot 3^{2-1}(3-1) \cdot 5^{6-1}(5-1) \\
& =2^{6} \cdot 3 \cdot 2 \cdot 5^{5} \cdot 2^{2} \\
& =48 \cdot 10^{5}=4800000
\end{aligned}
$$

