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Recall

For n € N, Euler's totient function is defined to be

o(n) = |(Z/nZ)"| = |{1 < a < n| (a.n) = 1}].

Last time we proved that ¢ is multiplicative: given distinct primes
pi and e € N,

o(ptt - pfr) = p(pi) - e(pf);

and we used this to deduce the formulae

(o) =TT o =011 (1-3)-

pln
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If we partition {1 < a < n} according to (a, n), we can use ¢ to
count the partitions and arrive at another useful identity.

Let n € N and suppose d|n. There is a bijection

{1<a<n]|(a,n)=d}+— {1§b§g\ <b,£):1}.

Proof. If 1 <a<nand (a,n) =d, let f(a) = 3.
We have

d=(an) = (dg,dg) —d (f(a),g) = (f(a),g) ~1.

Thus f: {1 <a<n|(a,n)=d} = {1<b< 2| (b5) =1}



On the other hand, if 1 < b < & and (b, §) = 1, define g(b) = bd.
Then

= d (b,Z) = (bd, n) = (g(). n)
,

sothat g: {1<b<Z| (b 5) =1} »{l<a<n|(an)=d}

Since f(g(b)) = f(bd) = 2 = b and g(f(a)) = g(3) = d3 = a,
f and g are inverses.

The result follows. O
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Lemma 1 has the following immediate corollary.

Let n € N and suppose d|n. Then

‘{1§a§n|(a,n):d}|:gp(2).

For d|n, the sets {1 < a < n|(a,n) = d} partition {1 < a < n}.

Thus

n= Z|{1§a§n|(a,n):d}|:Zg:(g).
d|n d|n
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But as d runs through the positive divisors of n, so does n/d. This
proves:

For n € N,

n=> ¢(d).
d|n

This identity will prove useful when we discuss primitive roots.

Before turning in that direction we prove one more identity
involving .
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Let neN. If n > 1, then

Proof. If 1 < a < nand (a,n) =1, then

1<n—a<n and (n—a,n)=(—a,n)=(a,n)=1.

Thus

SRETED TSNS SPED SRR
1<a<n 1<a<n 1<a<n 1<a<n 1<a<n
(a,n)=1 (a,n)=1 (a,n)=1 (a,n)=1 (a,n)=1
The result follows. O
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The Order of an Element

Definition

Let G be a group and a € G. The order (or period) of a, denoted
|a|, is the least n € N so that a” = e. If no such n exists, we say
that |a| is infinite.

Examples.

o If Gisagroup and a € G, then |a| =1 iffa=e.

@ Every nonzero element of Z has infinite order, since if a € Z
and a # 0, then an # 0 for all n € N.

® 2+ 6Z has (additive) order 3 since 2(2 4 6Z) = 4 + 6Z and
3(24+6Z) =6+ 6Z = 0+ 6Z.

® 2+ 5Z has (multiplicative) order 4 since

(2+5Z)> =4 +57,(2+52)* =3 +5%,(2+52)* =1+ 5Z.
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Properties of the Order

Let G be a group and a € G. If a has finite order n € N, then
a™ = e if and only if n|m.

Proof. Suppose a™ = e. Use the Division Algorithm to write
m=gqn+rwith0<r<n.
Then

e=a"=a"""" =23 = (a")9a" = e%a" = 2.

If r > 0, this contradicts the fact that n = |a|. So we must have
r =0 and hence n|m.
The converse is immediate. If m = ngq, then

am"=a"=(a")9=¢€e9=e.
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Let G be a group and a € G. If a has finite order n € N, then
a' = a iffi=j (mod n).

Proof. We have
a=d & dd)l=e & i ="
The result now follows from Theorem 1. O

This immediately implies:

Let G be a group and a € G. If a has finite order n € N, then the

distinct powers of a are e, a, a*,a>,...,a" L.
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It remains to address the powers of an element with infinite order.

Theorem 4

Let G be a group and a € G. If |a| is infinite, then a' = & iff
i = j. That is, the powers of a are all distinct.

Proof. Suppose a’ = &/ and i # j. Without loss of generality,
suppose | > j.

Then, as above, we have a’/ = e. Since i — j > 0, this implies |a|
is finite, which is a contradiction.

Thus we must have i = j. O
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Corollary 4

Let G be a group. If G contains an element of infinite order, then
G is infinite. Conversely, if G is finite, every element of G has
finite order.

Proof. If a € G has infinite order, then the subset {a'|i € Z} is
infinite, by Theorem 2.

Hence G is infinite as well. O

Let G be a finite group and a € G. Then |a| < |G]|.

Proof. Let n = |a|. Then G contains the elements
e,a,a’,...,a" 1 which are distinct by Corollary 2. Thus
|G| > n. O
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When G is a finite abelian group, we can give a more precise
relationship between |a| and |G].

Let G be a finite abelian group. For any a € G,

a| divides |G|.

Proof. For a € G, we know that alel = e.
The result now follows from Theorem 3. O

Remark. The conclusion of Theorem 5 holds for arbitrary finite
groups, but the proof would take us too far afield.
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Orders of Powers of Elements

Let G be a group, let a € G, and suppose that |a] = n € N.
Let m € Z and set b = a™. Since

bn — (am)n — amn — (an)m — em — e7

b necessarily has finite order.
Let's compute |b|. We have

bk=e & (a™MF=e & a™ =e < n|mk,

by Theorem 3.

Write m = (m, n)m’ and n = (m, n)n’, so that (m’,n") = 1. Then
nimk < (myn)n'|[(m,n)m'k < n'|lmk < |k,

by Euclid’s lemma.



The smallest positive k so that n’|k is n’. Thus:

Theorem 6

Let G be a group and let a € G have finite order n. Then for any
me 7Z,

Corollary 6

Let G be a group and let a € G have finite order n. If (m,n) =1
and b= a™, then

{e,a,a%,...,a" '} = {e,b,b?,... b"1}.

Proof. If (m,n) =1, then |b| = [a™| = Gny = N Thus b has
exactly n distinct powers.
But so does a, and every power of b is a power of a.

The result follows. O



Additive Orders Modulo n

We will primarily be interested in the orders of elements in the
groups Z/nZ and (Z/nZ)*.

We can very easily determine the orders of elements in Z/nZ.

We first notice that |1 + nZ| = n, since

k(l1+nZ)=k+nZ=0+nZ < nlk.

Let a+ nZ € Z/nZ. Then a+ nZ = a(1 + nZ). By Theorem 6 we
have:

The additive order of a+ nZ in Z/nZ is o

(a,n)
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Example. Consider a = 4 modulo 10. Since ﬁ =¥_514

should have additive order 5 modulo 10. Indeed:
24 =8, 34=2(mod 10), 44 =6 (mod 10), 54 =0 (mod 10).

Similar computations produce the following table.

Order ‘ Elements
1 0+ 10z
2 5+ 10Z

5 24 10Z, 4 +10Z, 6 + 10Z, 8 + 10Z
10 1+ 10Z, 3+ 10Z, 7+ 10Z, 9 + 10Z

By Corollary 6, it follows, for instance, that every element of
Z,/10Z is a multiple of 7 + 10Z.

This is equivalent to the statement that for any a € Z, the linear
congruence 7x = a (mod 10) has a solution.
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We can explain the preceding table by counting how many
elements of Z/nZ have a given order.

Let d divide |Z/nZ| = n. Then a+ nZ has order d iff d =
(a,n) =3

Thus, the number of elements in Z/nZ with order d is equal to

e

< a<al(n) = n/d = () = ol@)

by Corollary 1. These computations prove the next result.

Theorem 8

Let n € N and suppose d|n. There are exactly ¢(d) elements in
Z/nZ of order d.
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