Properties of Euler's Totient Function

Ryan C. Daileda

Trinity University
Number Theory

Recall

For $n \in \mathbb{N}$, Euler's totient function is defined to be

$$
\varphi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=|\{1 \leq a \leq n \mid(a, n)=1\}| .
$$

Last time we proved that φ is multiplicative: given distinct primes p_{i} and $e_{i} \in \mathbb{N}$,

$$
\varphi\left(p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}\right)=\varphi\left(p_{1}^{e_{1}}\right) \cdots \varphi\left(p_{r}^{e_{r}}\right)
$$

and we used this to deduce the formulae

$$
\varphi(n)=\prod_{p \mid n}\left(p^{e_{p}}-p^{e_{p}-1}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

If we partition $\{1 \leq a \leq n\}$ according to (a, n), we can use φ to count the partitions and arrive at another useful identity.

Lemma 1

Let $n \in \mathbb{N}$ and suppose $d \mid n$. There is a bijection

$$
\{1 \leq a \leq n \mid(a, n)=d\} \longleftrightarrow\left\{\left.1 \leq b \leq \frac{n}{d} \right\rvert\,\left(b, \frac{n}{d}\right)=1\right\}
$$

Proof. If $1 \leq a \leq n$ and $(a, n)=d$, let $f(a)=\frac{a}{d}$.
We have

$$
d=(a, n)=\left(d \frac{a}{d}, d \frac{n}{d}\right)=d\left(f(a), \frac{n}{d}\right) \Rightarrow\left(f(a), \frac{n}{d}\right)=1 .
$$

Thus $f:\{1 \leq a \leq n \mid(a, n)=d\} \rightarrow\left\{\left.1 \leq b \leq \frac{n}{d} \right\rvert\,\left(b, \frac{n}{d}\right)=1\right\}$.

On the other hand, if $1 \leq b \leq \frac{n}{d}$ and $\left(b, \frac{n}{d}\right)=1$, define $g(b)=b d$.

Then

$$
d=d\left(b, \frac{n}{d}\right)=(b d, n)=(g(b), n)
$$

so that $g:\left\{\left.1 \leq b \leq \frac{n}{d} \right\rvert\,\left(b, \frac{n}{d}\right)=1\right\} \rightarrow\{1 \leq a \leq n \mid(a, n)=d\}$.

Since $f(g(b))=f(b d)=\frac{b d}{d}=b$ and $g(f(a))=g\left(\frac{a}{d}\right)=d \frac{a}{d}=a$, f and g are inverses.

The result follows.

Lemma 1 has the following immediate corollary.

Corollary 1

Let $n \in \mathbb{N}$ and suppose $d \mid n$. Then

$$
|\{1 \leq a \leq n \mid(a, n)=d\}|=\varphi\left(\frac{n}{d}\right)
$$

For $d \mid n$, the sets $\{1 \leq a \leq n \mid(a, n)=d\}$ partition $\{1 \leq a \leq n\}$. Thus

$$
n=\sum_{d \mid n}|\{1 \leq a \leq n \mid(a, n)=d\}|=\sum_{d \mid n} \varphi\left(\frac{n}{d}\right)
$$

But as d runs through the positive divisors of n, so does n / d. This proves:

Theorem 1

For $n \in \mathbb{N}$,

$$
n=\sum_{d \mid n} \varphi(d)
$$

This identity will prove useful when we discuss primitive roots.

Before turning in that direction we prove one more identity involving φ.

Theorem 2

Let $n \in \mathbb{N}$. If $n>1$, then

$$
\sum_{\substack{1 \leq a<n \\(a, n)=1}} a=\frac{1}{2} n \varphi(n)
$$

Proof. If $1 \leq a \leq n$ and $(a, n)=1$, then

$$
1 \leq n-a<n \quad \text { and } \quad(n-a, n)=(-a, n)=(a, n)=1 .
$$

Thus

$$
\sum_{\substack{1 \leq a<n \\(a, n)=1}} a=\sum_{\substack{1 \leq a<n \\(a, n)=1}}(n-a)=n \sum_{\substack{1 \leq a<n \\(a, n)=1}} 1-\sum_{\substack{1 \leq a<n \\(a, n)=1}} a=n \varphi(n)-\sum_{\substack{1 \leq a<n \\(a, n)=1}} a
$$

The result follows.

The Order of an Element

Definition

Let G be a group and $a \in G$. The order (or period) of a, denoted $|a|$, is the least $n \in \mathbb{N}$ so that $a^{n}=e$. If no such n exists, we say that $|a|$ is infinite.

Examples.

- If G is a group and $a \in G$, then $|a|=1$ iff $a=e$.
- Every nonzero element of \mathbb{Z} has infinite order, since if $a \in \mathbb{Z}$ and $a \neq 0$, then $a n \neq 0$ for all $n \in \mathbb{N}$.
- $2+6 \mathbb{Z}$ has (additive) order 3 since $2(2+6 \mathbb{Z})=4+6 \mathbb{Z}$ and $3(2+6 \mathbb{Z})=6+6 \mathbb{Z}=0+6 \mathbb{Z}$.
- $2+5 \mathbb{Z}$ has (multiplicative) order 4 since

$$
(2+5 \mathbb{Z})^{2}=4+5 \mathbb{Z},(2+5 \mathbb{Z})^{3}=3+5 \mathbb{Z},(2+5 \mathbb{Z})^{4}=1+5 \mathbb{Z}
$$

Properties of the Order

Theorem 3

Let G be a group and $a \in G$. If a has finite order $n \in \mathbb{N}$, then $a^{m}=e$ if and only if $n \mid m$.

Proof. Suppose $a^{m}=e$. Use the Division Algorithm to write $m=q n+r$ with $0 \leq r<n$.
Then

$$
e=a^{m}=a^{q n+r}=a^{q n} a^{r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r}
$$

If $r>0$, this contradicts the fact that $n=|a|$. So we must have $r=0$ and hence $n \mid m$.
The converse is immediate. If $m=n q$, then

$$
a^{m}=a^{n q}=\left(a^{n}\right)^{q}=e^{q}=e
$$

Corollary 2

Let G be a group and $a \in G$. If a has finite order $n \in \mathbb{N}$, then $a^{i}=a^{j}$ iff $i \equiv j(\bmod n)$.

Proof. We have

$$
a^{i}=a^{j} \Leftrightarrow a^{i}\left(a^{j}\right)^{-1}=e \Leftrightarrow a^{i-j}=e .
$$

The result now follows from Theorem 1.
This immediately implies:

Corollary 3

Let G be a group and $a \in G$. If a has finite order $n \in \mathbb{N}$, then the distinct powers of a are e, $a, a^{2}, a^{3}, \ldots, a^{n-1}$.

It remains to address the powers of an element with infinite order.

Theorem 4

Let G be a group and $a \in G$. If $|a|$ is infinite, then $a^{i}=a^{j}$ iff $i=j$. That is, the powers of a are all distinct.

Proof. Suppose $a^{i}=a^{j}$ and $i \neq j$. Without loss of generality, suppose $i>j$.

Then, as above, we have $a^{i-j}=e$. Since $i-j>0$, this implies $|a|$ is finite, which is a contradiction.

Thus we must have $i=j$.

Corollary 4

Let G be a group. If G contains an element of infinite order, then G is infinite. Conversely, if G is finite, every element of G has finite order.

Proof. If $a \in G$ has infinite order, then the subset $\left\{a^{i} \mid i \in \mathbb{Z}\right\}$ is infinite, by Theorem 2.

Hence G is infinite as well.

Corollary 5

Let G be a finite group and $a \in G$. Then $|a| \leq|G|$.
Proof. Let $n=|a|$. Then G contains the elements $e, a, a^{2}, \ldots, a^{n-1}$, which are distinct by Corollary 2. Thus $|G| \geq n$.

When G is a finite abelian group, we can give a more precise relationship between $|a|$ and $|G|$.

Theorem 5

Let G be a finite abelian group. For any $a \in G,|a|$ divides $|G|$.

Proof. For $a \in G$, we know that $a^{|G|}=e$.

The result now follows from Theorem 3.

Remark. The conclusion of Theorem 5 holds for arbitrary finite groups, but the proof would take us too far afield.

Orders of Powers of Elements

Let G be a group, let $a \in G$, and suppose that $|a|=n \in \mathbb{N}$.
Let $m \in \mathbb{Z}$ and set $b=a^{m}$. Since

$$
b^{n}=\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}=e^{m}=e,
$$

b necessarily has finite order.
Let's compute $|b|$. We have

$$
b^{k}=e \Leftrightarrow\left(a^{m}\right)^{k}=e \Leftrightarrow a^{m k}=e \Leftrightarrow n \mid m k
$$

by Theorem 3.
Write $m=(m, n) m^{\prime}$ and $n=(m, n) n^{\prime}$, so that $\left(m^{\prime}, n^{\prime}\right)=1$. Then

$$
n\left|m k \Leftrightarrow(m, n) n^{\prime}\right|(m, n) m^{\prime} k \Leftrightarrow n^{\prime}\left|m^{\prime} k \Leftrightarrow n^{\prime}\right| k
$$

by Euclid's lemma.

The smallest positive k so that $n^{\prime} \mid k$ is n^{\prime}. Thus:

Theorem 6

Let G be a group and let $a \in G$ have finite order n. Then for any $m \in \mathbb{Z}$,

$$
\left|a^{m}\right|=\frac{n}{(m, n)}
$$

Corollary 6

Let G be a group and let $a \in G$ have finite order n. If $(m, n)=1$ and $b=a^{m}$, then

$$
\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}=\left\{e, b, b^{2}, \ldots, b^{n-1}\right\}
$$

Proof. If $(m, n)=1$, then $|b|=\left|a^{m}\right|=\frac{n}{(m, n)}=n$. Thus b has exactly n distinct powers.
But so does a, and every power of b is a power of a. The result follows.

Additive Orders Modulo n

We will primarily be interested in the orders of elements in the groups $\mathbb{Z} / n \mathbb{Z}$ and $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
We can very easily determine the orders of elements in $\mathbb{Z} / n \mathbb{Z}$.
We first notice that $|1+n \mathbb{Z}|=n$, since

$$
k(1+n \mathbb{Z})=k+n \mathbb{Z}=0+n \mathbb{Z} \Leftrightarrow n \mid k .
$$

Let $a+n \mathbb{Z} \in \mathbb{Z} / n \mathbb{Z}$. Then $a+n \mathbb{Z}=a(1+n \mathbb{Z})$. By Theorem 6 we have:

Theorem 7

The additive order of $a+n \mathbb{Z}$ in $\mathbb{Z} / n \mathbb{Z}$ is $\frac{n}{(a, n)}$.

Example. Consider $a=4$ modulo 10. Since $\frac{10}{(10,4)}=\frac{10}{2}=5,4$ should have additive order 5 modulo 10. Indeed:
$2 \cdot 4=8,3 \cdot 4 \equiv 2(\bmod 10), 4 \cdot 4 \equiv 6(\bmod 10), 5 \cdot 4 \equiv 0(\bmod 10)$.
Similar computations produce the following table.

Order	Elements
1	$0+10 \mathbb{Z}$
2	$5+10 \mathbb{Z}$
5	$2+10 \mathbb{Z}, 4+10 \mathbb{Z}, 6+10 \mathbb{Z}, 8+10 \mathbb{Z}$
10	$1+10 \mathbb{Z}, 3+10 \mathbb{Z}, 7+10 \mathbb{Z}, 9+10 \mathbb{Z}$

By Corollary 6, it follows, for instance, that every element of $\mathbb{Z} / 10 \mathbb{Z}$ is a multiple of $7+10 \mathbb{Z}$.
This is equivalent to the statement that for any $a \in \mathbb{Z}$, the linear congruence $7 x \equiv a(\bmod 10)$ has a solution.

We can explain the preceding table by counting how many elements of $\mathbb{Z} / n \mathbb{Z}$ have a given order.

Let d divide $|\mathbb{Z} / n \mathbb{Z}|=n$. Then $a+n \mathbb{Z}$ has order d iff $d=\frac{n}{(a, n)}$ iff $(a, n)=\frac{n}{d}$.

Thus, the number of elements in $\mathbb{Z} / n \mathbb{Z}$ with order d is equal to

$$
|\{1 \leq a \leq n \mid(a, n)=n / d\}|=\varphi\left(\frac{n}{n / d}\right)=\varphi(d)
$$

by Corollary 1. These computations prove the next result.

Theorem 8

Let $n \in \mathbb{N}$ and suppose $d \mid n$. There are exactly $\varphi(d)$ elements in $\mathbb{Z} / n \mathbb{Z}$ of order d.

