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Recall

For n ∈ N, Euler’s totient function is defined to be

ϕ(n) =
∣

∣(Z/nZ)×
∣

∣ =
∣

∣{1 ≤ a ≤ n | (a, n) = 1}
∣

∣.

Last time we proved that ϕ is multiplicative: given distinct primes
pi and ei ∈ N,

ϕ(pe11 · · · p
er
r ) = ϕ(pe11 ) · · ·ϕ(perr );

and we used this to deduce the formulae

ϕ(n) =
∏

p|n

(pep − pep−1) = n
∏

p|n

(

1−
1

p

)

.
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If we partition {1 ≤ a ≤ n} according to (a, n), we can use ϕ to
count the partitions and arrive at another useful identity.

Lemma 1

Let n ∈ N and suppose d |n. There is a bijection

{1 ≤ a ≤ n | (a, n) = d} ←→
{

1 ≤ b ≤
n

d
|
(

b,
n

d

)

= 1
}

.

Proof. If 1 ≤ a ≤ n and (a, n) = d , let f (a) = a
d
.

We have

d = (a, n) =
(

d
a

d
, d

n

d

)

= d
(

f (a),
n

d

)

⇒
(

f (a),
n

d

)

= 1.

Thus f : {1 ≤ a ≤ n | (a, n) = d} →
{

1 ≤ b ≤ n
d
|
(

b, n
d

)

= 1
}

.

Daileda The Totient Function



On the other hand, if 1 ≤ b ≤ n
d
and (b, n

d
) = 1, define g(b) = bd .

Then
d = d

(

b,
n

d

)

= (bd , n) = (g(b), n)

so that g :
{

1 ≤ b ≤ n
d
|
(

b, n
d

)

= 1
}

→ {1 ≤ a ≤ n | (a, n) = d}.

Since f (g(b)) = f (bd) = bd
d

= b and g(f (a)) = g( a
d
) = d a

d
= a,

f and g are inverses.

The result follows.
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Lemma 1 has the following immediate corollary.

Corollary 1

Let n ∈ N and suppose d |n. Then

∣

∣{1 ≤ a ≤ n | (a, n) = d}
∣

∣ = ϕ
( n

d

)

.

For d |n, the sets {1 ≤ a ≤ n | (a, n) = d} partition {1 ≤ a ≤ n}.

Thus

n =
∑

d|n

∣

∣{1 ≤ a ≤ n | (a, n) = d}
∣

∣ =
∑

d|n

ϕ
( n

d

)

.
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But as d runs through the positive divisors of n, so does n/d . This
proves:

Theorem 1

For n ∈ N,
n =

∑

d|n

ϕ(d).

This identity will prove useful when we discuss primitive roots.

Before turning in that direction we prove one more identity
involving ϕ.
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Theorem 2

Let n ∈ N. If n > 1, then

∑

1≤a<n
(a,n)=1

a =
1

2
nϕ(n).

Proof. If 1 ≤ a ≤ n and (a, n) = 1, then

1 ≤ n − a < n and (n − a, n) = (−a, n) = (a, n) = 1.

Thus
∑

1≤a<n
(a,n)=1

a =
∑

1≤a<n
(a,n)=1

(n − a) = n
∑

1≤a<n
(a,n)=1

1−
∑

1≤a<n
(a,n)=1

a = nϕ(n)−
∑

1≤a<n
(a,n)=1

a.

The result follows.
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The Order of an Element

Definition

Let G be a group and a ∈ G . The order (or period) of a, denoted
|a|, is the least n ∈ N so that an = e. If no such n exists, we say
that |a| is infinite.

Examples.

If G is a group and a ∈ G , then |a| = 1 iff a = e.

Every nonzero element of Z has infinite order, since if a ∈ Z

and a 6= 0, then an 6= 0 for all n ∈ N.

2 + 6Z has (additive) order 3 since 2(2 + 6Z) = 4 + 6Z and
3(2 + 6Z) = 6 + 6Z = 0 + 6Z.

2 + 5Z has (multiplicative) order 4 since

(2 + 5Z)2 = 4 + 5Z, (2 + 5Z)3 = 3 + 5Z, (2 + 5Z)4 = 1 + 5Z.
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Properties of the Order

Theorem 3

Let G be a group and a ∈ G. If a has finite order n ∈ N, then
am = e if and only if n|m.

Proof. Suppose am = e. Use the Division Algorithm to write
m = qn + r with 0 ≤ r < n.
Then

e = am = aqn+r = aqnar = (an)qar = eqar = ar .

If r > 0, this contradicts the fact that n = |a|. So we must have
r = 0 and hence n|m.
The converse is immediate. If m = nq, then

am = anq = (an)q = eq = e.
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Corollary 2

Let G be a group and a ∈ G. If a has finite order n ∈ N, then
ai = aj iff i ≡ j (mod n).

Proof. We have

ai = aj ⇔ ai(aj)−1 = e ⇔ ai−j = e.

The result now follows from Theorem 1.

This immediately implies:

Corollary 3

Let G be a group and a ∈ G. If a has finite order n ∈ N, then the
distinct powers of a are e, a, a2, a3, . . . , an−1.
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It remains to address the powers of an element with infinite order.

Theorem 4

Let G be a group and a ∈ G. If |a| is infinite, then ai = aj iff
i = j . That is, the powers of a are all distinct.

Proof. Suppose ai = aj and i 6= j . Without loss of generality,
suppose i > j .

Then, as above, we have ai−j = e. Since i − j > 0, this implies |a|
is finite, which is a contradiction.

Thus we must have i = j .
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Corollary 4

Let G be a group. If G contains an element of infinite order, then
G is infinite. Conversely, if G is finite, every element of G has
finite order.

Proof. If a ∈ G has infinite order, then the subset {ai | i ∈ Z} is
infinite, by Theorem 2.

Hence G is infinite as well.

Corollary 5

Let G be a finite group and a ∈ G. Then |a| ≤ |G |.

Proof. Let n = |a|. Then G contains the elements
e, a, a2, . . . , an−1, which are distinct by Corollary 2. Thus
|G | ≥ n.
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When G is a finite abelian group, we can give a more precise
relationship between |a| and |G |.

Theorem 5

Let G be a finite abelian group. For any a ∈ G, |a| divides |G |.

Proof. For a ∈ G , we know that a|G | = e.

The result now follows from Theorem 3.

Remark. The conclusion of Theorem 5 holds for arbitrary finite
groups, but the proof would take us too far afield.
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Orders of Powers of Elements

Let G be a group, let a ∈ G , and suppose that |a| = n ∈ N.

Let m ∈ Z and set b = am. Since

bn = (am)n = amn = (an)m = em = e,

b necessarily has finite order.

Let’s compute |b|. We have

bk = e ⇔ (am)k = e ⇔ amk = e ⇔ n|mk ,

by Theorem 3.

Write m = (m, n)m′ and n = (m, n)n′, so that (m′, n′) = 1. Then

n|mk ⇔ (m, n)n′|(m, n)m′k ⇔ n′|m′k ⇔ n′|k ,

by Euclid’s lemma.
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The smallest positive k so that n′|k is n′. Thus:

Theorem 6

Let G be a group and let a ∈ G have finite order n. Then for any
m ∈ Z,

|am| =
n

(m, n)
.

Corollary 6

Let G be a group and let a ∈ G have finite order n. If (m, n) = 1
and b = am, then

{e, a, a2, . . . , an−1} = {e, b, b2, . . . , bn−1}.

Proof. If (m, n) = 1, then |b| = |am| = n
(m,n) = n. Thus b has

exactly n distinct powers.
But so does a, and every power of b is a power of a.
The result follows.
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Additive Orders Modulo n

We will primarily be interested in the orders of elements in the
groups Z/nZ and (Z/nZ)×.

We can very easily determine the orders of elements in Z/nZ.

We first notice that |1 + nZ| = n, since

k(1 + nZ) = k + nZ = 0 + nZ ⇔ n|k .

Let a + nZ ∈ Z/nZ. Then a + nZ = a(1 + nZ). By Theorem 6 we
have:

Theorem 7

The additive order of a+ nZ in Z/nZ is
n

(a, n)
.
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Example. Consider a = 4 modulo 10. Since 10
(10,4) =

10
2 = 5, 4

should have additive order 5 modulo 10. Indeed:

2·4 = 8, 3·4 ≡ 2 (mod 10), 4·4 ≡ 6 (mod 10), 5·4 ≡ 0 (mod 10).

Similar computations produce the following table.

Order Elements

1 0 + 10Z
2 5 + 10Z
5 2 + 10Z, 4 + 10Z, 6 + 10Z, 8 + 10Z
10 1 + 10Z, 3 + 10Z, 7 + 10Z, 9 + 10Z

By Corollary 6, it follows, for instance, that every element of
Z/10Z is a multiple of 7 + 10Z.

This is equivalent to the statement that for any a ∈ Z, the linear
congruence 7x ≡ a (mod 10) has a solution.
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We can explain the preceding table by counting how many
elements of Z/nZ have a given order.

Let d divide
∣

∣Z/nZ
∣

∣ = n. Then a + nZ has order d iff d = n
(a,n) iff

(a, n) = n
d
.

Thus, the number of elements in Z/nZ with order d is equal to

∣

∣{1 ≤ a ≤ n | (a, n) = n/d}
∣

∣ = ϕ

(

n

n/d

)

= ϕ(d),

by Corollary 1. These computations prove the next result.

Theorem 8

Let n ∈ N and suppose d |n. There are exactly ϕ(d) elements in
Z/nZ of order d.
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