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Cyclic Subgroups

Let G be a group and let a ∈ G . The set

〈a〉 = {am |m ∈ Z}

is clearly closed under multiplication and inversion in G .

〈a〉 is therefore a group in its own right, the cyclic subgroup
generated by a.

Our work last time immediately proves:

Theorem 1

Let G be a group and let a ∈ G. If |a| is infinite, so is 〈a〉. If
|a| = n ∈ N, then

〈a〉 = {e, a, a2, . . . , an−1},

and these elements are all distinct.

Daileda Primitive Roots



Examples

The (additive) subgroup of Z/20Z generated by 12 + 20Z is

{12 + 20Z, 4 + 20Z, 16 + 20Z, 8 + 20Z, 0 + 20Z},

which has 5 = 20
(12,20) elements, as expected.

The (multiplicative) subgroup of (Z/16Z)× generated by 3+16Z is

{3 + 16Z, 9 + 16Z, 11 + 16Z, 1 + 16Z},

which has 4 = |3 + 16Z| elements.
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Cyclic Groups

Definition

A group G is called cyclic if there is an a ∈ G so that G = 〈a〉. In
this case we say that G is generated by a.

Since |a| =
∣∣〈a〉

∣∣, if G is finite we find that

G is cyclic ⇔ G has an element of order |G |.

Since the additive order of 1 + nZ in Z/nZ is exactly n, we
conclude that

Z/nZ (under addition) is always cyclic.
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Recall that the additive order of a + nZ in Z/nZ is n
(a,n) . Thus:

The (additive) generators of Z/nZ are the elements of (Z/nZ)×.

The multiplicative structure of (Z/nZ)× is a bit more subtle than
the additive structure of Z/nZ.

For instance, we have:

(Z/15Z)× (Z/5Z)×

Order Elements Order Elements

1 1 + 15Z 1 1 + 5Z
2 4 + 15Z, 11 + 15Z, 14 + 15Z 2 4 + 5Z
4 2 + 15Z, 7 + 15Z, 4 2 + 5Z, 3 + 5Z

8 + 15Z, 13 + 15Z

This implies that (Z/5Z)× is cyclic, while (Z/15Z)× is not.
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Primitive Roots

Goal: Precisely determine those n ∈ N for which (Z/nZ)× is cyclic.

Definition

An integer a ∈ Z for which 〈a + nZ〉 = (Z/nZ)× is called a
primitive root modulo n.

Example. Based on the previous slide, 2 and 3 are primitive roots
modulo 5, whereas there are no primitive roots modulo 15.

Note that a ∈ Z is a primitive root modulo n iff (a, n) = 1 and
either:

1. For every b ∈ Z with (b, n) = 1, there is a k ∈ N so that
ak ≡ b (mod n); OR

2. The multiplicative order of a + nZ is ϕ(n).
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Primitive Roots Modulo 2n

Our first general result concerns moduli that are powers of 2.

Theorem 2

Let n ≥ 3. Then there are no primitive roots modulo 2n.

Remark. 3 is a primitive root modulo 22 = 4.

Proof. Suppose that (a, 2n) = 1. Then a is odd, and in the HW
you proved (exercise 4.2.15) that

a2
n−2

≡ 1 (mod 2n).

This means that the multiplicative order of a + 2nZ cannot exceed
2n−2.

But ϕ(2n) = 2n−1, so a cannot be a primitive root modulo 2n.
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Primitive Roots Modulo p
n in General

We will see that 2 is the only “deficient” prime. Specifically, we
will (eventually) prove:

Theorem 3

Let p be an odd prime and let n ∈ N. There exists a primitive root
modulo pn.

Our proof will, of necessity, be nonconstructive.

We will first establish the existence of a primitive root modulo p
using a pigeonhole argument.

We will then successively “lift” this element to a primitive root
modulo pn for n ≥ 2.
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Lagrange’s Theorem

We begin our hunt for primitive roots with a result on polynomial
congruences modulo p.

Theorem 4 (Lagrange)

Let f (X ) = anX
n + an−1X

n−1 + · · · a1X + a0 be a polynomial with
integer coefficients and let p be prime. If p ∤ an, then the
congruence f (X ) ≡ 0 (mod p) has at most n distinct solutions
modulo p.

Remarks.

This says that a polynomial congruence modulo p never has
more solutions that the degree of the polynomial.

Compare this to the analogous result on roots of polynomials
with real (or complex) coefficients.
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Proof. Let Z[X ] denote the set of all polynomials with integer
coefficients.

For any r ∈ Z define

Tr : Z[X ] → Z[X ],

g(X ) 7→ g(X − r).

Since T−1
r = T−r , this is a bijection.

This means that for any g(X ) ∈ Z[X ] there is a unique
h(X ) ∈ Z[X ] so that Tr (h) = g , i.e.

g(X ) = h(X − r).

The polynomial h(X ) is called the Taylor expansion of g(X ) at r .
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Write h(X ) = bmX
m + bm−1X

m−1 + · · · b1X + b0 with bi ∈ Z.

Then

g(X ) = h(X − r)

= bm(X − r)m + bm−1(X − r)m−1 + · · · + b1(X − r) + b0

= (X − r)g̃(X ) + b0,

for some g̃(X ) ∈ Z[X ].

In particular
g(r) = (r − r)g̃(r) + b0 = b0.

We conclude that for any g(X ) ∈ Z[X ] and any r ∈ Z, there exists
a g̃(X ) ∈ Z[X ] so that

g(X ) = (X − r)g̃(X ) + g(r).
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We now induct on the degree n ≥ 1 of f (X ).

If n = 1, then f (X ) = a1X + a0, and

f (X ) ≡ 0 (mod p) ⇔ a1X ≡ −a0 (mod p).

Since p ∤ a1 and p is prime, (a1, p) = 1.

Therefore the linear congruence a1X ≡ −a0 (mod p) has exactly 1
solution modulo p.

Now fix n ≥ 2 and suppose we have proven the result for all
polynomials in Z[X ] of degree < n.

If f (X ) ≡ 0 (mod p) has no solutions modulo p, then we’re
finished.

So we may assume there is an r ∈ Z so that f (r) ≡ 0 (mod p).
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Write f (X ) = (X − r)f̃ (X ) + f (r) for some f̃ (X ) ∈ Z[X ].

Suppose s 6≡ r (mod p) satisfies f (s) ≡ 0 (mod p).

Then

0 ≡ f (s) ≡ (s − r)f̃ (s) + f (r) ≡ (s − r)f̃ (s) (mod p).

Since p ∤ (s − r) and p is prime, by Euclid’s lemma we must have
p|f̃ (s). That is, f̃ (s) ≡ 0 (mod p).

So every solution to f (X ) ≡ 0 (mod p) that is different from r
modulo p is actually a solution to f̃ (X ) ≡ 0 (mod p).
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Since deg f (X ) ≥ 2 and f (r) is a constant, we must have

n = deg f (X ) = deg((X − r)f̃ (X ) + f (r))

= deg((X − r)f̃ (X )) = 1 + deg f̃ (X ),

which implies that deg f̃ (X ) = n− 1 < n.

Since f (X ) and f̃ (X ) have the same leading coefficient, we find
that the inductive hypothesis applies to f̃ (X ).

Therefore the congruence f̃ (X ) ≡ 0 (mod p) has at most n − 1
incongruent solutions modulo p.

Together with our earlier observation, this means that
f (X ) ≡ 0 (mod p) has no more than n incongruent solutions
modulo p, which completes our induction.
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Example

Consider f (X ) = X 2 + 1. Since 5 ≡ 1 (mod 4), we know that the
congruence X 2 + 1 ≡ 0 (mod 5) has at least one solution modulo
5.

In particular, f (2) = 5 ≡ 0 (mod 5), so we must have

X 2 + 1 = (X − 2)f̃ (X ) + 5

for some integral polynomial f̃ (X ). Indeed, one can easily check
that

X 2 + 1 = (X − 2)(X + 2) + 5.

It follows immediately that the only other solution to
X 2 + 1 ≡ 0 (mod 5) is X ≡ −2 ≡ 3 (mod 5).
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Now fix an odd prime p and let d |ϕ(p) = p − 1.

Suppose that a + pZ has multiplicative order d in (Z/pZ)×.

Then the first d powers

1 + pZ, a+ pZ, a2 + pZ, . . . , ad−1 + pZ

are all distinct, and satisfy

(ak + pZ)d = akd + pZ = (ad + pZ)k = (1 + pZ)k = 1 + pZ.

That is, 1, a, a2, . . . , ad−1 are incongruent modulo p and solve the
polynomial congruence

X d − 1 ≡ 0 (mod p).
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By Lagrange’s Theorem, there can be no other solutions modulo p.

Therefore if b + pZ also has order d , then b ≡ ak (mod p) for
some k , which means

d = |b + pZ| = |(a + pZ)k | =
d

(k , d)
⇒ (k , d) = 1.

Thus, the powers ak + pZ with 0 ≤ k ≤ d − 1 and (k , d) = 1 yield
all elements of (Z/pZ)× with order d .

This proves:

Lemma 1

Let p be an odd prime and let d |p − 1. If there is one element in
(Z/pZ)× of order d, then there are exactly ϕ(d) of them.
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Now let ψ(d) denote the number of elements of (Z/pZ)× of order
exactly d .

Lemma 1 implies that 0 ≤ ψ(d) ≤ ϕ(d).

Since every element of (Z/pZ)× has some order dividing p − 1, we
have

p − 1 =
∑

d|p−1

ψ(d) ≤
∑

d|p−1

ϕ(d) = p − 1,

by Gauss’ Theorem.

Therefore
ψ(d) = ϕ(d) for all d |p − 1.
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Primitive Roots Modulo p Exist

This proves our main result of the day.

Theorem 5

Let p be an odd prime and let d |p − 1. Then there are exactly
ϕ(d) elements of (Z/pZ)× of order d.

Corollary 1

For any odd prime p, there exist exactly ϕ(p − 1) (incongruent
modulo p) primitive roots modulo p.

Proof. Take d = p − 1 in the theorem.

And, as we have seen in the course of our proof, given one
primitive root a modulo p, all the others are given by ak (mod p),
for 1 ≤ k ≤ p − 1 with (k , p − 1) = 1.
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Examples

The following table lists the all the incongruent primitive roots
modulo p, for small values of p.

p Primitive Roots

3 2
5 2, 3
7 3, 5
11 2, 6, 7, 8
13 2, 6, 7, 11
17 3, 5, 6, 7, 10, 11, 12, 14
19 2, 3, 10, 13, 14, 15
23 5, 7, 10, 11, 14, 15, 17, 19, 20, 21
29 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27
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Remarks

Although one can explicitly compute a primitive root modulo a
given prime p, there is no known simple general formula that will
produce one for a generic (or even infinitely many) p.

Artin’s primitive root conjecture asserts that if a 6= �,−1, then a
is a primitive root modulo infinitely many primes.

In 1967 Hooley proved that Artin’s conjecture is true under the
assumption of the Generalized Riemann Hypothesis for Dedekind
zeta functions.

While Artin’s conjecture is unresolved for any specific value of a,
Heath-Brown has shown that at least one of 2, 3, or 5 is a
primitive root modulo infinitely many primes, and that there are at
most two primes for which Artin’s conjecture fails.

Daileda Primitive Roots


