Cyclic Groups and Primitive Roots

Ryan C. Daileda

Trinity University
Number Theory

Cyclic Subgroups

Let G be a group and let $a \in G$. The set

$$
\langle a\rangle=\left\{a^{m} \mid m \in \mathbb{Z}\right\}
$$

is clearly closed under multiplication and inversion in G.
$\langle a\rangle$ is therefore a group in its own right, the cyclic subgroup generated by a.
Our work last time immediately proves:

Theorem 1

Let G be a group and let $a \in G$. If $|a|$ is infinite, so is $\langle a\rangle$. If $|a|=n \in \mathbb{N}$, then

$$
\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

and these elements are all distinct.

Examples

The (additive) subgroup of $\mathbb{Z} / 20 \mathbb{Z}$ generated by $12+20 \mathbb{Z}$ is

$$
\{12+20 \mathbb{Z}, 4+20 \mathbb{Z}, 16+20 \mathbb{Z}, 8+20 \mathbb{Z}, 0+20 \mathbb{Z}\}
$$

which has $5=\frac{20}{(12,20)}$ elements, as expected.

The (multiplicative) subgroup of $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$generated by $3+16 \mathbb{Z}$ is

$$
\{3+16 \mathbb{Z}, 9+16 \mathbb{Z}, 11+16 \mathbb{Z}, 1+16 \mathbb{Z}\}
$$

which has $4=|3+16 \mathbb{Z}|$ elements.

Cyclic Groups

Definition

A group G is called cyclic if there is an $a \in G$ so that $G=\langle a\rangle$. In this case we say that G is generated by a.

Since $|a|=|\langle a\rangle|$, if G is finite we find that G is cyclic $\Leftrightarrow G$ has an element of order $|G|$.

Since the additive order of $1+n \mathbb{Z}$ in $\mathbb{Z} / n \mathbb{Z}$ is exactly n, we conclude that
$\mathbb{Z} / n \mathbb{Z}$ (under addition) is always cyclic.

Recall that the additive order of $a+n \mathbb{Z}$ in $\mathbb{Z} / n \mathbb{Z}$ is $\frac{n}{(a, n)}$. Thus:
The (additive) generators of $\mathbb{Z} / n \mathbb{Z}$ are the elements of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

The multiplicative structure of $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a bit more subtle than the additive structure of $\mathbb{Z} / n \mathbb{Z}$.
For instance, we have:

	$(\mathbb{Z} / 15 \mathbb{Z})^{\times}$	$(\mathbb{Z} / 5 \mathbb{Z})^{\times}$	
Order	Elements	Order	Elements
1	$1+15 \mathbb{Z}$	1	$1+5 \mathbb{Z}$
2	$4+15 \mathbb{Z}, 11+15 \mathbb{Z}, 14+15 \mathbb{Z}$	2	$4+5 \mathbb{Z}$
4	$2+15 \mathbb{Z}, 7+15 \mathbb{Z}$,	4	$2+5 \mathbb{Z}, 3+5 \mathbb{Z}$
	$8+15 \mathbb{Z}, 13+15 \mathbb{Z}$		

This implies that $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$is cyclic, while $(\mathbb{Z} / 15 \mathbb{Z})^{\times}$is not.

Primitive Roots

Goal: Precisely determine those $n \in \mathbb{N}$ for which $(\mathbb{Z} / n \mathbb{Z})^{\times}$is cyclic.

Definition

An integer $a \in \mathbb{Z}$ for which $\langle a+n \mathbb{Z}\rangle=(\mathbb{Z} / n \mathbb{Z})^{\times}$is called a primitive root modulo n.

Example. Based on the previous slide, 2 and 3 are primitive roots modulo 5, whereas there are no primitive roots modulo 15 .

Note that $a \in \mathbb{Z}$ is a primitive root modulo n iff $(a, n)=1$ and either:

1. For every $b \in \mathbb{Z}$ with $(b, n)=1$, there is a $k \in \mathbb{N}$ so that $a^{k} \equiv b(\bmod n) ;$ OR
2. The multiplicative order of $a+n \mathbb{Z}$ is $\varphi(n)$.

Primitive Roots Modulo 2^{n}

Our first general result concerns moduli that are powers of 2.

Theorem 2

Let $n \geq 3$. Then there are no primitive roots modulo 2^{n}.

Remark. 3 is a primitive root modulo $2^{2}=4$.
Proof. Suppose that $\left(a, 2^{n}\right)=1$. Then a is odd, and in the HW you proved (exercise 4.2.15) that

$$
a^{2^{n-2}} \equiv 1\left(\bmod 2^{n}\right)
$$

This means that the multiplicative order of $a+2^{n} \mathbb{Z}$ cannot exceed 2^{n-2}.

But $\varphi\left(2^{n}\right)=2^{n-1}$, so a cannot be a primitive root modulo 2^{n}.

Primitive Roots Modulo p^{n} in General

We will see that 2 is the only "deficient" prime. Specifically, we will (eventually) prove:

Theorem 3

Let p be an odd prime and let $n \in \mathbb{N}$. There exists a primitive root modulo p^{n}.

Our proof will, of necessity, be nonconstructive.
We will first establish the existence of a primitive root modulo p using a pigeonhole argument.

We will then successively "lift" this element to a primitive root modulo p^{n} for $n \geq 2$.

Lagrange's Theorem

We begin our hunt for primitive roots with a result on polynomial congruences modulo p.

Theorem 4 (Lagrange)

Let $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots a_{1} X+a_{0}$ be a polynomial with integer coefficients and let p be prime. If $p \nmid a_{n}$, then the congruence $f(X) \equiv 0(\bmod p)$ has at most n distinct solutions modulo p.

Remarks.

- This says that a polynomial congruence modulo p never has more solutions that the degree of the polynomial.
- Compare this to the analogous result on roots of polynomials with real (or complex) coefficients.

Proof. Let $\mathbb{Z}[X]$ denote the set of all polynomials with integer coefficients.

For any $r \in \mathbb{Z}$ define

$$
\begin{aligned}
T_{r}: \mathbb{Z}[X] & \rightarrow \mathbb{Z}[X], \\
g(X) & \mapsto g(X-r) .
\end{aligned}
$$

Since $T_{r}^{-1}=T_{-r}$, this is a bijection.
This means that for any $g(X) \in \mathbb{Z}[X]$ there is a unique $h(X) \in \mathbb{Z}[X]$ so that $T_{r}(h)=g$, i.e.

$$
g(X)=h(X-r)
$$

The polynomial $h(X)$ is called the Taylor expansion of $g(X)$ at r.

Write $h(X)=b_{m} X^{m}+b_{m-1} X^{m-1}+\cdots b_{1} X+b_{0}$ with $b_{i} \in \mathbb{Z}$.
Then

$$
\begin{aligned}
g(X) & =h(X-r) \\
& =b_{m}(X-r)^{m}+b_{m-1}(X-r)^{m-1}+\cdots+b_{1}(X-r)+b_{0} \\
& =(X-r) \widetilde{g}(X)+b_{0},
\end{aligned}
$$

for some $\widetilde{g}(X) \in \mathbb{Z}[X]$.
In particular

$$
g(r)=(r-r) \widetilde{g}(r)+b_{0}=b_{0} .
$$

We conclude that for any $g(X) \in \mathbb{Z}[X]$ and any $r \in \mathbb{Z}$, there exists a $\widetilde{g}(X) \in \mathbb{Z}[X]$ so that

$$
g(X)=(X-r) \widetilde{g}(X)+g(r)
$$

We now induct on the degree $n \geq 1$ of $f(X)$.
If $n=1$, then $f(X)=a_{1} X+a_{0}$, and

$$
f(X) \equiv 0(\bmod p) \Leftrightarrow a_{1} X \equiv-a_{0}(\bmod p)
$$

Since $p \nmid a_{1}$ and p is prime, $\left(a_{1}, p\right)=1$.
Therefore the linear congruence $a_{1} X \equiv-a_{0}(\bmod p)$ has exactly 1 solution modulo p.

Now fix $n \geq 2$ and suppose we have proven the result for all polynomials in $\mathbb{Z}[X]$ of degree $<n$.

If $f(X) \equiv 0(\bmod p)$ has no solutions modulo p, then we're finished.

So we may assume there is an $r \in \mathbb{Z}$ so that $f(r) \equiv 0(\bmod p)$.

Write $f(X)=(X-r) \tilde{f}(X)+f(r)$ for some $\tilde{f}(X) \in \mathbb{Z}[X]$.
Suppose $s \not \equiv r(\bmod p)$ satisfies $f(s) \equiv 0(\bmod p)$.
Then

$$
0 \equiv f(s) \equiv(s-r) \widetilde{f}(s)+f(r) \equiv(s-r) \widetilde{f}(s)(\bmod p) .
$$

Since $p \nmid(s-r)$ and p is prime, by Euclid's lemma we must have $p \mid \widetilde{f}(s)$. That is, $\widetilde{f}(s) \equiv 0(\bmod p)$.

So every solution to $f(X) \equiv 0(\bmod p)$ that is different from r modulo p is actually a solution to $\widetilde{f}(X) \equiv 0(\bmod p)$.

Since $\operatorname{deg} f(X) \geq 2$ and $f(r)$ is a constant, we must have

$$
\begin{aligned}
n & =\operatorname{deg} f(X)=\operatorname{deg}((X-r) \widetilde{f}(X)+f(r)) \\
& =\operatorname{deg}((X-r) \widetilde{f}(X))=1+\operatorname{deg} \widetilde{f}(X)
\end{aligned}
$$

which implies that $\operatorname{deg} \widetilde{f}(X)=n-1<n$.
Since $f(X)$ and $\widetilde{f}(X)$ have the same leading coefficient, we find that the inductive hypothesis applies to $\tilde{f}(X)$.

Therefore the congruence $\widetilde{f}(X) \equiv 0(\bmod p)$ has at most $n-1$ incongruent solutions modulo p.

Together with our earlier observation, this means that $f(X) \equiv 0(\bmod p)$ has no more than n incongruent solutions modulo p, which completes our induction.

Example

Consider $f(X)=X^{2}+1$. Since $5 \equiv 1(\bmod 4)$, we know that the congruence $X^{2}+1 \equiv 0(\bmod 5)$ has at least one solution modulo 5.

In particular, $f(2)=5 \equiv 0(\bmod 5)$, so we must have

$$
X^{2}+1=(X-2) \widetilde{f}(X)+5
$$

for some integral polynomial $\widetilde{f}(X)$. Indeed, one can easily check that

$$
X^{2}+1=(X-2)(X+2)+5
$$

It follows immediately that the only other solution to $X^{2}+1 \equiv 0(\bmod 5)$ is $X \equiv-2 \equiv 3(\bmod 5)$.

Now fix an odd prime p and let $d \mid \varphi(p)=p-1$.
Suppose that $a+p \mathbb{Z}$ has multiplicative order d in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
Then the first d powers

$$
1+p \mathbb{Z}, a+p \mathbb{Z}, a^{2}+p \mathbb{Z}, \ldots, a^{d-1}+p \mathbb{Z}
$$

are all distinct, and satisfy

$$
\left(a^{k}+p \mathbb{Z}\right)^{d}=a^{k d}+p \mathbb{Z}=\left(a^{d}+p \mathbb{Z}\right)^{k}=(1+p \mathbb{Z})^{k}=1+p \mathbb{Z}
$$

That is, $1, a, a^{2}, \ldots, a^{d-1}$ are incongruent modulo p and solve the polynomial congruence

$$
X^{d}-1 \equiv 0(\bmod p)
$$

By Lagrange's Theorem, there can be no other solutions modulo p.
Therefore if $b+p \mathbb{Z}$ also has order d, then $b \equiv a^{k}(\bmod p)$ for some k, which means

$$
d=|b+p \mathbb{Z}|=\left|(a+p \mathbb{Z})^{k}\right|=\frac{d}{(k, d)} \Rightarrow(k, d)=1 .
$$

Thus, the powers $a^{k}+p \mathbb{Z}$ with $0 \leq k \leq d-1$ and $(k, d)=1$ yield all elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$with order d.

This proves:

Lemma 1

Let p be an odd prime and let $d \mid p-1$. If there is one element in $(\mathbb{Z} / p \mathbb{Z})^{\times}$of order d, then there are exactly $\varphi(d)$ of them.

Now let $\psi(d)$ denote the number of elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$of order exactly d.

Lemma 1 implies that $0 \leq \psi(d) \leq \varphi(d)$.

Since every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$has some order dividing $p-1$, we have

$$
p-1=\sum_{d \mid p-1} \psi(d) \leq \sum_{d \mid p-1} \varphi(d)=p-1
$$

by Gauss' Theorem.

Therefore

$$
\psi(d)=\varphi(d) \quad \text { for all } d \mid p-1
$$

Primitive Roots Modulo p Exist

This proves our main result of the day.

Theorem 5

Let p be an odd prime and let $d \mid p-1$. Then there are exactly $\varphi(d)$ elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$of order d.

Corollary 1

For any odd prime p, there exist exactly $\varphi(p-1)$ (incongruent modulo p) primitive roots modulo p.

Proof. Take $d=p-1$ in the theorem.
And, as we have seen in the course of our proof, given one primitive root a modulo p, all the others are given by $a^{k}(\bmod p)$, for $1 \leq k \leq p-1$ with $(k, p-1)=1$.

Examples

The following table lists the all the incongruent primitive roots modulo p, for small values of p.

p	Primitive Roots
3	2
5	2,3
7	3,5
11	$2,6,7,8$
13	$2,6,7,11$
17	$3,5,6,7,10,11,12,14$
19	$2,3,10,13,14,15$
23	$5,7,10,11,14,15,17,19,20,21$
29	$2,3,8,10,11,14,15,18,19,21,26,27$

Remarks

Although one can explicitly compute a primitive root modulo a given prime p, there is no known simple general formula that will produce one for a generic (or even infinitely many) p.

Artin's primitive root conjecture asserts that if $a \neq \square,-1$, then a is a primitive root modulo infinitely many primes.

In 1967 Hooley proved that Artin's conjecture is true under the assumption of the Generalized Riemann Hypothesis for Dedekind zeta functions.

While Artin's conjecture is unresolved for any specific value of a, Heath-Brown has shown that at least one of 2,3 , or 5 is a primitive root modulo infinitely many primes, and that there are at most two primes for which Artin's conjecture fails.

