Cyclic Groups and Primitive Roots

Ryan C. Daileda

Trinity University

Number Theory

Let G be a group and let $a \in G$. The set

 $\langle a \rangle = \{a^m \mid m \in \mathbb{Z}\}$

is clearly closed under multiplication and inversion in G. $\langle a \rangle$ is therefore a group in its own right, the cyclic subgroup generated by a.

Our work last time immediately proves:

Theorem 1

Let G be a group and let $a \in G$. If |a| is infinite, so is $\langle a \rangle$. If $|a| = n \in \mathbb{N}$, then

$$\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\},\$$

and these elements are all distinct.

The (additive) subgroup of $\mathbb{Z}/20\mathbb{Z}$ generated by $12+20\mathbb{Z}$ is

$$\{12 + 20\mathbb{Z}, 4 + 20\mathbb{Z}, 16 + 20\mathbb{Z}, 8 + 20\mathbb{Z}, 0 + 20\mathbb{Z}\},\$$

which has $5 = \frac{20}{(12,20)}$ elements, as expected.

The (multiplicative) subgroup of $(\mathbb{Z}/16\mathbb{Z})^{\times}$ generated by $3+16\mathbb{Z}$ is

$$\{3+16\mathbb{Z}, 9+16\mathbb{Z}, 11+16\mathbb{Z}, 1+16\mathbb{Z}\},\$$

which has $4 = |3 + 16\mathbb{Z}|$ elements.

Definition

A group G is called *cyclic* if there is an $a \in G$ so that $G = \langle a \rangle$. In this case we say that G is *generated* by a.

Since $|a| = |\langle a \rangle|$, if G is finite we find that

G is cyclic \Leftrightarrow G has an element of order |G|.

Since the additive order of $1 + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$ is exactly *n*, we conclude that

 $\mathbb{Z}/n\mathbb{Z}$ (under addition) is always cyclic.

Recall that the additive order of $a + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{(a,n)}$. Thus:

The (additive) generators of $\mathbb{Z}/n\mathbb{Z}$ are the elements of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

The multiplicative structure of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a bit more subtle than the additive structure of $\mathbb{Z}/n\mathbb{Z}$.

For instance, we have:

$(\mathbb{Z}/15\mathbb{Z})^{ imes}$		$(\mathbb{Z}/5\mathbb{Z})^{ imes}$	
Order	Elements	Order	Elements
1	$1+15\mathbb{Z}$	1	$1+5\mathbb{Z}$
2	$4+15\mathbb{Z},11+15\mathbb{Z},14+15\mathbb{Z}$	2	$4+5\mathbb{Z}$
4	$2+15\mathbb{Z},7+15\mathbb{Z},$	4	$2+5\mathbb{Z},3+5\mathbb{Z}$
	$8+15\mathbb{Z}, 13+15\mathbb{Z}$		

This implies that $(\mathbb{Z}/5\mathbb{Z})^{\times}$ is cyclic, while $(\mathbb{Z}/15\mathbb{Z})^{\times}$ is not.

Goal: Precisely determine those $n \in \mathbb{N}$ for which $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic.

Definition

An integer $a \in \mathbb{Z}$ for which $\langle a + n\mathbb{Z} \rangle = (\mathbb{Z}/n\mathbb{Z})^{\times}$ is called a *primitive root modulo n*.

Example. Based on the previous slide, 2 and 3 are primitive roots modulo 5, whereas there are no primitive roots modulo 15.

Note that $a \in \mathbb{Z}$ is a primitive root modulo n iff (a, n) = 1 and either:

- 1. For every $b \in \mathbb{Z}$ with (b, n) = 1, there is a $k \in \mathbb{N}$ so that $a^k \equiv b \pmod{n}$; OR
- **2.** The multiplicative order of $a + n\mathbb{Z}$ is $\varphi(n)$.

Our first general result concerns moduli that are powers of 2.

Theorem 2

Let $n \ge 3$. Then there are no primitive roots modulo 2^n .

Remark. 3 is a primitive root modulo $2^2 = 4$.

Proof. Suppose that $(a, 2^n) = 1$. Then *a* is odd, and in the HW you proved (exercise 4.2.15) that

$$a^{2^{n-2}} \equiv 1 \pmod{2^n}.$$

This means that the multiplicative order of $a + 2^n \mathbb{Z}$ cannot exceed 2^{n-2} .

But $\varphi(2^n) = 2^{n-1}$, so a cannot be a primitive root modulo 2^n .

We will see that 2 is the only "deficient" prime. Specifically, we will (eventually) prove:

Theorem 3

Let p be an odd prime and let $n \in \mathbb{N}$. There exists a primitive root modulo p^n .

Our proof will, of necessity, be nonconstructive.

We will first establish the existence of a primitive root modulo p using a pigeonhole argument.

We will then successively "lift" this element to a primitive root modulo p^n for $n \ge 2$.

We begin our hunt for primitive roots with a result on polynomial congruences modulo *p*.

Theorem 4 (Lagrange)

Let $f(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ be a polynomial with integer coefficients and let p be prime. If $p \nmid a_n$, then the congruence $f(X) \equiv 0 \pmod{p}$ has at most n distinct solutions modulo p.

Remarks.

- This says that a polynomial congruence modulo *p* never has more solutions that the degree of the polynomial.
- Compare this to the analogous result on roots of polynomials with real (or complex) coefficients.

Proof. Let $\mathbb{Z}[X]$ denote the set of all polynomials with integer coefficients.

For any $r \in \mathbb{Z}$ define

$$egin{aligned} &\mathcal{T}_r:\mathbb{Z}[X] o\mathbb{Z}[X],\ &g(X)\mapsto g(X-r). \end{aligned}$$

Since $T_r^{-1} = T_{-r}$, this is a bijection.

This means that for any $g(X) \in \mathbb{Z}[X]$ there is a unique $h(X) \in \mathbb{Z}[X]$ so that $T_r(h) = g$, i.e.

$$g(X)=h(X-r).$$

The polynomial h(X) is called the Taylor expansion of g(X) at r.

Write
$$h(X) = b_m X^m + b_{m-1} X^{m-1} + \cdots + b_1 X + b_0$$
 with $b_i \in \mathbb{Z}$.
Then

$$g(X) = h(X - r)$$

= $b_m(X - r)^m + b_{m-1}(X - r)^{m-1} + \dots + b_1(X - r) + b_0$
= $(X - r)\widetilde{g}(X) + b_0$,

for some $\widetilde{g}(X) \in \mathbb{Z}[X]$.

In particular

$$g(r)=(r-r)\widetilde{g}(r)+b_0=b_0.$$

We conclude that for any $g(X) \in \mathbb{Z}[X]$ and any $r \in \mathbb{Z}$, there exists a $\widetilde{g}(X) \in \mathbb{Z}[X]$ so that

$$g(X) = (X - r)\tilde{g}(X) + g(r).$$

We now induct on the degree $n \ge 1$ of f(X).

If
$$n=1$$
, then $f(X)=a_1X+a_0$, and

$$f(X) \equiv 0 \pmod{p} \iff a_1 X \equiv -a_0 \pmod{p}.$$

Since $p \nmid a_1$ and p is prime, $(a_1, p) = 1$.

Therefore the linear congruence $a_1X \equiv -a_0 \pmod{p}$ has exactly 1 solution modulo p.

Now fix $n \ge 2$ and suppose we have proven the result for all polynomials in $\mathbb{Z}[X]$ of degree < n.

If $f(X) \equiv 0 \pmod{p}$ has no solutions modulo p, then we're finished.

So we may assume there is an $r \in \mathbb{Z}$ so that $f(r) \equiv 0 \pmod{p}$.

Write
$$f(X) = (X - r)\widetilde{f}(X) + f(r)$$
 for some $\widetilde{f}(X) \in \mathbb{Z}[X]$.

Suppose $s \not\equiv r \pmod{p}$ satisfies $f(s) \equiv 0 \pmod{p}$.

Then

$$0 \equiv f(s) \equiv (s-r)\widetilde{f}(s) + f(r) \equiv (s-r)\widetilde{f}(s) \pmod{p}.$$

Since $p \nmid (s - r)$ and p is prime, by Euclid's lemma we must have $p \mid \tilde{f}(s)$. That is, $\tilde{f}(s) \equiv 0 \pmod{p}$.

So every solution to $f(X) \equiv 0 \pmod{p}$ that is *different* from r modulo p is actually a solution to $\tilde{f}(X) \equiv 0 \pmod{p}$.

Since deg $f(X) \ge 2$ and f(r) is a constant, we must have

$$n = \deg f(X) = \deg((X - r)\widetilde{f}(X) + f(r))$$
$$= \deg((X - r)\widetilde{f}(X)) = 1 + \deg \widetilde{f}(X),$$

which implies that deg $\tilde{f}(X) = n - 1 < n$.

Since f(X) and $\tilde{f}(X)$ have the same leading coefficient, we find that the inductive hypothesis applies to $\tilde{f}(X)$.

Therefore the congruence $\tilde{f}(X) \equiv 0 \pmod{p}$ has at most n-1 incongruent solutions modulo p.

Together with our earlier observation, this means that $f(X) \equiv 0 \pmod{p}$ has no more than *n* incongruent solutions modulo *p*, which completes our induction.

Consider $f(X) = X^2 + 1$. Since $5 \equiv 1 \pmod{4}$, we know that the congruence $X^2 + 1 \equiv 0 \pmod{5}$ has at least one solution modulo 5.

In particular, $f(2) = 5 \equiv 0 \pmod{5}$, so we must have

$$X^2 + 1 = (X - 2)\widetilde{f}(X) + 5$$

for some integral polynomial $\tilde{f}(X)$. Indeed, one can easily check that

$$X^{2} + 1 = (X - 2)(X + 2) + 5.$$

It follows immediately that the only other solution to $X^2 + 1 \equiv 0 \pmod{5}$ is $X \equiv -2 \equiv 3 \pmod{5}$.

Now fix an odd prime p and let $d|\varphi(p) = p - 1$.

Suppose that $a + p\mathbb{Z}$ has multiplicative order d in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

Then the first d powers

$$1 + p\mathbb{Z}, a + p\mathbb{Z}, a^2 + p\mathbb{Z}, \dots, a^{d-1} + p\mathbb{Z}$$

are all distinct, and satisfy

$$(a^k+p\mathbb{Z})^d=a^{kd}+p\mathbb{Z}=(a^d+p\mathbb{Z})^k=(1+p\mathbb{Z})^k=1+p\mathbb{Z}.$$

That is, $1, a, a^2, \ldots, a^{d-1}$ are incongruent modulo p and solve the polynomial congruence

$$X^d - 1 \equiv 0 \pmod{p}.$$

By Lagrange's Theorem, there can be *no other solutions* modulo *p*.

Therefore if $b + p\mathbb{Z}$ also has order d, then $b \equiv a^k \pmod{p}$ for some k, which means

$$d=|b+p\mathbb{Z}|=|(a+p\mathbb{Z})^k|=rac{d}{(k,d)} \Rightarrow (k,d)=1.$$

Thus, the powers $a^k + p\mathbb{Z}$ with $0 \le k \le d - 1$ and (k, d) = 1 yield *all* elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with order *d*.

This proves:

Lemma 1

Let p be an odd prime and let d|p-1. If there is one element in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of order d, then there are exactly $\varphi(d)$ of them.

Now let $\psi(d)$ denote the number of elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of order exactly d.

Lemma 1 implies that $0 \le \psi(d) \le \varphi(d)$.

Since every element of $(\mathbb{Z}/p\mathbb{Z})^{ imes}$ has some order dividing p-1, we have

$$p-1=\sum_{d\mid p-1}\psi(d)\leq \sum_{d\mid p-1}\varphi(d)=p-1,$$

by Gauss' Theorem.

Therefore

$$\psi(d) = \varphi(d)$$
 for all $d|p-1$.

This proves our main result of the day.

Theorem 5

Let p be an odd prime and let d|p-1. Then there are exactly $\varphi(d)$ elements of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of order d.

Corollary 1

For any odd prime p, there exist exactly $\varphi(p-1)$ (incongruent modulo p) primitive roots modulo p.

Proof. Take d = p - 1 in the theorem.

And, as we have seen in the course of our proof, given one primitive root a modulo p, all the others are given by $a^k \pmod{p}$, for $1 \le k \le p-1$ with (k, p-1) = 1.

The following table lists the all the incongruent primitive roots modulo p, for small values of p.

р	Primitive Roots	
3	2	
5	2, 3	
7	3, 5	
11	2, 6, 7, 8	
13	2, 6, 7, 11	
17	3, 5, 6, 7, 10, 11, 12, 14	
19	2, 3, 10, 13, 14, 15	
23	5, 7, 10, 11, 14, 15, 17, 19, 20, 21	
29	2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27	

Although one can explicitly compute a primitive root modulo a given prime p, there is no known simple general formula that will produce one for a *generic* (or even infinitely many) p.

Artin's primitive root conjecture asserts that if $a \neq \Box, -1$, then a is a primitive root modulo infinitely many primes.

In 1967 Hooley proved that Artin's conjecture is true under the assumption of the *Generalized Riemann Hypothesis* for Dedekind zeta functions.

While Artin's conjecture is unresolved for any specific value of *a*, Heath-Brown has shown that at least one of 2, 3, or 5 is a primitive root modulo infinitely many primes, and that there are at most two primes for which Artin's conjecture fails.