Primitive Roots Modulo Prime Powers

Ryan C. Daileda

Trinity University

Number Theory

Recall

Given $n \in \mathbb{N}$, a primitive root modulo n is an integer a so that

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\langle a+n \mathbb{Z}\rangle
$$

Equivalently, for any $b \in \mathbb{Z}$ with $(b, n)=1$, there exists a $k \in \mathbb{N}$ so that $a^{k} \equiv b(\bmod n)$.

Last time we used a counting argument to prove that primitive roots modulo primes exist.

Theorem 1

Let $p \in \mathbb{N}$ be prime. Then there are exactly $\varphi(p-1)$ (incongruent modulo p) primitive roots modulo p.

Order Lifting

Today we will treat the case of primitive roots modulo p^{n}, where p is an odd prime.
(Remember that there are no primitive roots modulo 2^{n} for $n \geq 3$). We will produce primitive roots modulo p^{n} by "lifting" primitive roots modulo p.

Recall that if $m \mid n$, then there is a well-defined map

$$
\begin{aligned}
r:(\mathbb{Z} / n \mathbb{Z})^{\times} & \rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \\
a+n \mathbb{Z} & \mapsto a+m \mathbb{Z} .
\end{aligned}
$$

Lemma 1

If $m \mid n$ and $(a, n)=1$, then the order of $a+m \mathbb{Z}$ divides the order of $a+n \mathbb{Z}$.

Proof. Let d denote the order of $a+n \mathbb{Z}$. Then $a^{d} \equiv 1(\bmod n)$. Since $m \mid n$, this implies $a^{d} \equiv 1(\bmod m)$. Thus, $(a+m \mathbb{Z})^{d}=1+m \mathbb{Z}$.

This implies that the order of $a+m \mathbb{Z}$ divides d.

Corollary 1

Let p be a prime. If a is a primitive root modulo p, then $a+p^{2} \mathbb{Z}$ has order $p-1$ or $p(p-1)$.

Proof. Let d be the order of $a+p^{2} \mathbb{Z}$. Since

$$
\left|\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\times}\right|=\varphi\left(p^{2}\right)=p(p-1)
$$

we have $d \mid p(p-1)$.
Since $a+p \mathbb{Z}$ has order $p-1$, by Lemma $1 p-1 \mid d$.

Primitive Roots Modulo p^{2}

So we have $p-1|d| p(p-1)$, which implies $\frac{d}{p-1}$ divides p.
Since p is prime, this means $\frac{d}{p-1}$ is either 1 or p.
That is, $d=p-1$ or $d=p(p-1)$.

Theorem 2

Let p be an odd prime. If $a \in \mathbb{Z}$ is a primitive root modulo p, then either a or $a+p$ is a primitive root modulo p^{2}.

Proof. By Corollary $1, a+p^{2} \mathbb{Z}$ has either order $p-1$ or $p(p-1)$.
In the second case we are finished.

So we may assume that $a+p^{2} \mathbb{Z}$ has order $p-1$.

That is, $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

Since $a \equiv a+p(\bmod p),(a+p)+p \mathbb{Z}$ also has order $p-1$.

So $(a+p)+p^{2} \mathbb{Z}$ has order $p-1$ or $p(p-1)$, by Corollary 1 .

Thus, if we can show that $(a+p)^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, we will be finished.

By the Binomial Theorem and our assumption on a we have

$$
\begin{aligned}
(a+p)^{p-1} & \equiv a^{p-1}+(p-1) a^{p-2} p\left(\bmod p^{2}\right) \\
& \equiv 1-a^{p-2} p\left(\bmod p^{2}\right)
\end{aligned}
$$

If this is $\equiv 1\left(\bmod p^{2}\right)$, then $a^{p-2} p \equiv 0\left(\bmod p^{2}\right)$ iff $a^{p-2} \equiv 0(\bmod p)$ iff $a \equiv 0(\bmod p)($ by Euclid's lemma), which contradicts the fact that $(a, p)=1$.

Thus $(a+p)^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, and the result is proven.

Theorem 2 gives us an explicit algorithm for constructing primitive roots modulo p^{2} from primitive roots modulo p.

Examples

2 is a primitive root modulo 3 , which means that 2 or $2+3=5$ is a primitive root modulo $3^{2}=9$.

Since $2^{3-1}=4 \not \equiv 1(\bmod 9)$, it must be that 2 is a primitive root modulo 9 .

The smallest "exception" occurs when $p=29$. In this case 14 is a primitive root modulo 29.

But $14^{28} \equiv 1\left(\bmod 29^{2}\right)$, so that 14 is not a primitive root modulo 29^{2}.

Instead, $14+29=43$ is a primitive root modulo 29^{2}.

Primitive Roots Modulo p^{n}

For $n \geq 3$, we have the following result concerning primitive roots modulo p^{n}.

Theorem 3

Let p be an odd prime and $n \geq 3$. If $a \in \mathbb{Z}$ is a primitive root modulo p^{n-1}, then a is a primitive root modulo p^{n}.

Proof. Let d be the multiplicative order of $a+p^{n} \mathbb{Z}$. Then $d \mid \varphi\left(p^{n}\right)=p^{n-1}(p-1)$.

By Lemma 1, the order of $a+p^{n-1} \mathbb{Z}$ divides d as well. Thus

$$
\left.\varphi\left(p^{n-1}\right)=p^{n-2}(p-1)|d| p^{n-1}(p-1) \Rightarrow \frac{d}{p^{n-2}(p-1)} \right\rvert\, p
$$

Since p is prime, this implies that $\frac{d}{p^{n-2}(p-1)} \in\{1, p\}$ or

$$
d=p^{n-2}(p-1) \text { or } p^{n-1}(p-1)
$$

It therefore suffices to show that $a^{p^{n-2}(p-1)} \not \equiv 1\left(\bmod p^{n}\right)$.
Now Euler's Theorem implies

$$
a^{p^{n-3}(p-1)} \equiv 1\left(\bmod p^{n-2}\right) \Rightarrow a^{p^{n-3}(p-1)}=1+k p^{n-2} .
$$

However, since a is a primitive root modulo $p^{n-1}, a^{p^{n-3}(p-1)} \not \equiv 1$ $\left(\bmod p^{n-1}\right)$.

It follows that $p \nmid k$.

By the Binomial Theorem we therefore have

$$
\begin{aligned}
a^{p^{n-2}(p-1)}= & \left(a^{p^{n-3}(p-1)}\right)^{p}=\left(1+k p^{n-2}\right)^{p} \\
= & 1+\binom{p}{1} k p^{n-2}+\binom{p}{2} k^{2} p^{2(n-2)}+\cdots \\
& \cdots+\binom{p}{p-1} k^{p-1} p^{(p-1)(n-2)}+k^{p} p^{p(n-2)} \\
& \cdots 1+k p^{n-1} \not \equiv 1\left(\bmod p^{n}\right)
\end{aligned}
$$

since $\binom{p}{m} \equiv 0(\bmod p)$ for $1 \leq m \leq p-1, p, n \geq 3$ and $p \nmid k$.

This is what we needed to show.

Corollary 2

Let p an odd prime and let $a \in \mathbb{Z}$ be a primitive root modulo p. Then either a or $a+p$ is a primitive modulo p^{n} for all $n \geq 2$.

Proof. By Theorem 2, either a or $a+p$ is a primitive root modulo p^{2}. The result follows from Theorem 3 and a quick induction. \square

Examples.

- Since 2 is a primitive root modulo 3 and 9 , it is a primitive root modulo 3^{n} for all $n \geq 1$.
- Since 14 is a primitive root modulo 29 and $14+29=43$ is a primitive root modulo $29^{2}, 43$ is a primitive root modulo 29^{n} for all $n \geq 2$.

Primitive Roots Modulo Composite Integers in General

We are almost ready completely classify the natural numbers n for which there exist primitive roots.

Lemma 2

Let $m, n \in \mathbb{N}$. Suppose that $(m, n)=1$ and $m, n \geq 3$. Then there is no primitive root modulo mn .

Proof. Suppose that $(a, m n)=1$. Then $(a, m)=(a, n)=1$. Since $\varphi(m)$ and $\varphi(n)$ are both even, Euler's Theorem implies

$$
\begin{aligned}
& a^{\frac{\varphi(m) \varphi(n)}{2}}=\left(a^{\varphi(m)}\right)^{\frac{\varphi(n)}{2}} \equiv 1^{\frac{\varphi(n)}{2}} \equiv 1(\bmod m), \\
& a^{\frac{\varphi(m) \varphi(n)}{2}}=\left(a^{\varphi(n)}\right)^{\frac{\varphi(m)}{2}} \equiv 1^{\frac{\varphi(m)}{2}} \equiv 1(\bmod n) .
\end{aligned}
$$

Thus $a \frac{\varphi(m) \varphi(n)}{2} \equiv 1(\bmod m n)$, by the CRT.

So the order of a modulo $m n$ cannot exceed $\frac{\varphi(m) \varphi(n)}{2}$.
But $\frac{\varphi(m) \varphi(n)}{2}=\frac{\varphi(m n)}{2}<\varphi(m n)$.
So a cannot be a primitive root modulo $m n$.
We can now eliminate "most" composite numbers from consideration.

Corollary 3

Let $n \in \mathbb{N}$. Then n fails to have a primitive root if either:

1. n is divisible by two odd primes.
2. $n=2^{k} p^{\ell}$, where $k \geq 2$ and p is an odd prime.

Proof (Sketch). In both cases we can write $n=a b$ with $(a, b)=1$ and $a, b \geq 3$.

We now find that the only candidates for moduli for which primitive roots exist are $2,4, p^{k}$ and $2 p^{k}$, where p is an odd prime. We've seen that primitive roots do, indeed, exist in the first three cases.

It remains to address integers of the form $2 p^{k}$, where p is an odd prime.

Lemma 3

Let p be an odd prime. For any $k \in \mathbb{N}$, there is a primitive root modulo $2 p^{k}$.

Proof. Let a be a primitive root modulo p^{k}.
Since $a \equiv a+p^{k}\left(\bmod p^{k}\right), a+p^{k}$ is also a primitive root modulo p^{k}.
Since either a or $a+p^{k}$ is even, we can assume WLOG that a is odd.

Since $\left(a, p^{k}\right)=1$ by assumption, it follows that $\left(a, 2 p^{k}\right)=1$.

We will show that a is a primitive root modulo $2 p^{k}$.

Let $r=\left|a+2 p^{k} \mathbb{Z}\right|$. By Lemma 1, $\varphi\left(p^{k}\right)=\left|a+p^{k} \mathbb{Z}\right|$ must divide r.

But then we have $\varphi\left(p^{k}\right)|r| \varphi\left(2 p^{k}\right)=\varphi(2) \varphi\left(p^{k}\right)=\varphi\left(p^{k}\right)$.

Hence $r=\varphi\left(p^{k}\right)=\varphi\left(2 p^{k}\right)$, and we're finished.

We have achieved our complete classification!

Theorem 4

Let $n \in \mathbb{N}$. There is a primitive root modulo n if and only if

$$
n=2,4, p^{k}, \text { or } 2 p^{k}
$$

where p is an odd prime.

Remark. Euler, Lagarange, Legendre and Gauss all had a hand in originally proving Theorem 4.

Legendre gave the first complete proof of the existence of primitive roots modulo primes in 1785, and Gauss first proved Theorem 4 in 1801.

Example

Let's find a primitive root modulo $338=2 \cdot 13^{2}$.
Since $\varphi(13)=12$ and

$$
2^{2}=4,2^{3}=8,2^{4} \equiv 3(\bmod 13), 2^{6} \equiv-1(\bmod 13)
$$

2 must be a primitive root modulo 13. And since

$$
2^{12} \equiv 40 \not \equiv 1(\bmod 169)
$$

2 must also be a primitive root modulo 169 .
Since 2 is even, the proof of Lemma 3 tells us that $2+169=171$ must be a primitive root modulo 338 (or modulo $2 \cdot 13^{k}$).

