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Recall

Given n € N, a primitive root modulo n is an integer a so that

(Z/nZ)* = (a+ nZ).

Equivalently, for any b € Z with (b, n) = 1, there exists a k € N so
that a¥ = b (mod n).

Last time we used a counting argument to prove that primitive
roots modulo primes exist.

Let p € N be prime. Then there are exactly p(p — 1) (incongruent
modulo p) primitive roots modulo p.
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Order Lifting

Today we will treat the case of primitive roots modulo p”, where p
is an odd prime.

(Remember that there are no primitive roots modulo 2" for n > 3).

We will produce primitive roots modulo p” by “lifting” primitive
roots modulo p.

Recall that if m|n, then there is a well-defined map

r:(Z/nZ)* — (Z/mZ)*
a+ nZ — a+ mZ.

If m|n and (a, n) = 1, then the order of a+ mZ divides the order
of a+ nZ.
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Proof. Let d denote the order of a+ nZ. Then a9 =1 (mod n).

Since m|n, this implies ¢ =1 (mod m). Thus,
(a4 mZ)! =1+ mZ.

This implies that the order of a + mZ divides d. O

Let p be a prime. If a is a primitive root modulo p,then a + p°Z
has order p — 1 or p(p — 1).

Proof. Let d be the order of a+ p?Z. Since
(Z/p*Z)*| = @(p?) = p(p — 1),

we have d|p(p — 1).
Since a+ pZ has order p — 1, by Lemma 1 p — 1/d.
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Primitive Roots Modulo p?

So we have p — 1|d|p(p — 1), which implies p;il divides p.

Since p is prime, this means 1 1S either 1 or p.

Thatis,d=p—1ord=p(p—1). O

Let p be an odd prime. If a € Z is a primitive root modulo p, then
either a or a+ p is a primitive root modulo p?.

Proof. By Corollary 1, a + p?Z has either order p — 1 or p(p — 1).

In the second case we are finished.
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So we may assume that a + p?Z has order p — 1.

That is, a7 =1 (mod p?).

Since a= a+ p (mod p), (a+ p) + pZ also has order p — 1.
So (a + p) + p°Z has order p — 1 or p(p — 1), by Corollary 1.

Thus, if we can show that (a+ p)P~1 #Z 1 (mod p?), we will be
finished.
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By the Binomial Theorem and our assumption on a we have

(a+p)P~t=a""t 4 (p—1)a"?p (mod p)
=1-2a"2p (mod p?).

If this is = 1 (mod p?), then a?=2p =0 (mod p?) iff

aP=2 =0 (mod p) iff a= 0 (mod p) (by Euclid’s lemma), which
contradicts the fact that (a, p) = 1.

Thus (a+ p)P~t £ 1 (mod p?), and the result is proven. O

Theorem 2 gives us an explicit algorithm for constructing primitive
roots modulo p? from primitive roots modulo p.
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SETES

2 is a primitive root modulo 3, which means that 2 or 24+3 =5 is
a primitive root modulo 3% = 0.

Since 2371 =4 #£1 (mod 9), it must be that 2 is a primitive root
modulo 9.

The smallest “exception” occurs when p = 29. In this case 14 is a
primitive root modulo 29.

But 142 =1 (mod 292), so that 14 is not a primitive root modulo
292,

Instead, 14 4+ 29 = 43 is a primitive root modulo 292.
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Primitive Roots Modulo p”

For n > 3, we have the following result concerning primitive roots
modulo p".

Let p be an odd prime and n > 3. If a € Z is a primitive root
modulo p"~1, then a is a primitive root modulo p".

Proof. Let d be the multiplicative order of a + p"Z. Then
dle(p™) = p" Hp—1).

By Lemma 1, the order of a4+ p"~1Z divides d as well. Thus

o(p" ) = p"2(p—1)|d|p" Y (p—1) = m P
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Since p is prime, this implies that m € {1,p} or

d=p"2(p—1)or p"}(p-1)

It therefore suffices to show that a?" “(P~1) £ 1 (mod p").
Now Euler's Theorem implies

P ) = (mod p"™?) = a?" P = 1 4 kp 2,
However, since a is a primitive root modulo p"~1, 2P (p-1) #%1
(mod p"~1).

It follows that p 1 k.
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By the Binomial Theorem we therefore have

P (p-1) (ap"‘3(p—1))p =(1+ kpn—2)p

14 <ll’) kp"2 + <12’> K2p2(n=2) 4 ...

o (p P 1) kP p(P-1(1-2) | P pp(n=2)

=1+ kp" 1 #1 (mod p")

since (P) =0 (mod p) for L<m<p—1,p,n>3andptk.

This is what we needed to show. O
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Let p an odd prime and let a € Z be a primitive root modulo p.
Then either a or a+ p is a primitive modulo p" for all n > 2.

Proof. By Theorem 2, either a or a + p is a primitive root modulo
p?. The result follows from Theorem 3 and a quick induction. [J

Examples.
@ Since 2 is a primitive root modulo 3 and 9, it is a primitive

root modulo 3" for all n > 1.

@ Since 14 is a primitive root modulo 29 and 14 +29 =43 is a
primitive root modulo 292, 43 is a primitive root modulo 29"
for all n > 2.
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Primitive Roots Modulo Composite Integers in General

We are almost ready completely classify the natural numbers n for
which there exist primitive roots.

Let m,n € N. Suppose that (m,n) =1 and m,n > 3. Then there
is no primitive root modulo mn.

Proof. Suppose that (a, mn) = 1. Then (a, m) = (a,n) = 1.
Since ¢(m) and ¢(n) are both even, Euler's Theorem implies

(m)p(n) (n) (n)
o = (a¢(m))% =15 =1 (mod m),

om)  e(m)

a 2":(3"”(”))2 =12 =1 (mod n).

(m)ep(n)

Thusa~ 2 =1 (mod mn), by the CRT.



So the order of a modulo mn cannot exceed M.

But <p(m%s0(n) _ <p(f2rm) < o(mn).

So a cannot be a primitive root modulo mn. O

We can now eliminate “most” composite numbers from
consideration.

Let n € N. Then n fails to have a primitive root if either:

1. n is divisible by two odd primes.

2. n=2kpt, where k > 2 and p is an odd prime.

Proof (Sketch). In both cases we can write n = ab with (a,b) =1
and a,b > 3. O
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We now find that the only candidates for moduli for which
primitive roots exist are 2, 4, p¥ and 2p¥, where p is an odd prime.

We've seen that primitive roots do, indeed, exist in the first three
cases.

It remains to address integers of the form 2pX, where p is an odd
prime.

Let p be an odd prime. For any k € N, there is a primitive root
modulo 2p*.

Proof. Let a be a primitive root modulo p*.

Since a = a+ pX (mod pk), a+ pX is also a primitive root modulo
p¥.

Since either a or a + p¥ is even, we can assume WLOG that a is
odd.
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Since (a, p¥) = 1 by assumption, it follows that (a,2p*) = 1.

We will show that a is a primitive root modulo 2pX.

Let r = |a+2p*Z|. By Lemma 1, o(p*) = |a+ p*Z| must divide r.
But then we have (p*)|rlio(2p%) = ¢(2)p(pk) = ("),

Hence r = ¢(p*) = ¢(2p*), and we're finished. O
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We have achieved our complete classification!

Theorem 4

Let n € N. There is a primitive root modulo n if and only if
n=2,4,p%, or2p¥,

where p is an odd prime.

Remark. Euler, Lagarange, Legendre and Gauss all had a hand in

originally proving Theorem 4.

Legendre gave the first complete proof of the existence of primitive
roots modulo primes in 1785, and Gauss first proved Theorem 4 in
1801.

Daileda Primitive Roots Mod p"



Example

Let's find a primitive root modulo 338 = 2 - 132.
Since p(13) =12 and
22 = 4,23 =8,2* =3 (mod 13),2° = —1 (mod 13)
2 must be a primitive root modulo 13. And since
212 =40 # 1 (mod 169),
2 must also be a primitive root modulo 169.

Since 2 is even, the proof of Lemma 3 tells us that 2 + 169 = 171
must be a primitive root modulo 338 (or modulo 2 - 13%).
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