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Recall

Given n ∈ N, a primitive root modulo n is an integer a so that

(Z/nZ)× = 〈a + nZ〉.

Equivalently, for any b ∈ Z with (b, n) = 1, there exists a k ∈ N so
that ak ≡ b (mod n).

Last time we used a counting argument to prove that primitive
roots modulo primes exist.

Theorem 1

Let p ∈ N be prime. Then there are exactly ϕ(p − 1) (incongruent
modulo p) primitive roots modulo p.
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Order Lifting

Today we will treat the case of primitive roots modulo pn, where p
is an odd prime.

(Remember that there are no primitive roots modulo 2n for n ≥ 3).

We will produce primitive roots modulo pn by “lifting” primitive
roots modulo p.

Recall that if m|n, then there is a well-defined map

r : (Z/nZ)× → (Z/mZ)×

a+ nZ 7→ a +mZ.

Lemma 1

If m|n and (a, n) = 1, then the order of a +mZ divides the order
of a + nZ.
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Proof. Let d denote the order of a + nZ. Then ad ≡ 1 (mod n).

Since m|n, this implies ad ≡ 1 (mod m). Thus,
(a +mZ)d = 1 +mZ.

This implies that the order of a +mZ divides d .

Corollary 1

Let p be a prime. If a is a primitive root modulo p,then a + p2Z
has order p − 1 or p(p − 1).

Proof. Let d be the order of a + p2Z. Since

∣

∣(Z/p2Z)×
∣

∣ = ϕ(p2) = p(p − 1),

we have d |p(p − 1).

Since a+ pZ has order p − 1, by Lemma 1 p − 1|d .
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Primitive Roots Modulo p
2

So we have p − 1|d |p(p − 1), which implies d
p−1 divides p.

Since p is prime, this means d
p−1 is either 1 or p.

That is, d = p − 1 or d = p(p − 1).

Theorem 2

Let p be an odd prime. If a ∈ Z is a primitive root modulo p, then
either a or a + p is a primitive root modulo p2.

Proof. By Corollary 1, a + p2Z has either order p − 1 or p(p − 1).

In the second case we are finished.
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So we may assume that a + p2Z has order p − 1.

That is, ap−1 ≡ 1 (mod p2).

Since a ≡ a + p (mod p), (a + p) + pZ also has order p − 1.

So (a + p) + p2Z has order p − 1 or p(p − 1), by Corollary 1.

Thus, if we can show that (a + p)p−1 6≡ 1 (mod p2), we will be
finished.
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By the Binomial Theorem and our assumption on a we have

(a + p)p−1 ≡ ap−1 + (p − 1)ap−2p (mod p2)

≡ 1− ap−2p (mod p2).

If this is ≡ 1 (mod p2), then ap−2p ≡ 0 (mod p2) iff
ap−2 ≡ 0 (mod p) iff a ≡ 0 (mod p) (by Euclid’s lemma), which
contradicts the fact that (a, p) = 1.

Thus (a + p)p−1 6≡ 1 (mod p2), and the result is proven.

Theorem 2 gives us an explicit algorithm for constructing primitive
roots modulo p2 from primitive roots modulo p.
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Examples

2 is a primitive root modulo 3, which means that 2 or 2 + 3 = 5 is
a primitive root modulo 32 = 9.

Since 23−1 = 4 6≡ 1 (mod 9), it must be that 2 is a primitive root
modulo 9.

The smallest “exception” occurs when p = 29. In this case 14 is a
primitive root modulo 29.

But 1428 ≡ 1 (mod 292), so that 14 is not a primitive root modulo
292.

Instead, 14 + 29 = 43 is a primitive root modulo 292.
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Primitive Roots Modulo p
n

For n ≥ 3, we have the following result concerning primitive roots
modulo pn.

Theorem 3

Let p be an odd prime and n ≥ 3. If a ∈ Z is a primitive root
modulo pn−1, then a is a primitive root modulo pn.

Proof. Let d be the multiplicative order of a + pnZ. Then
d |ϕ(pn) = pn−1(p − 1).

By Lemma 1, the order of a + pn−1Z divides d as well. Thus

ϕ(pn−1) = pn−2(p − 1)|d |pn−1(p − 1) ⇒
d

pn−2(p − 1)

∣

∣

∣

∣

p.
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Since p is prime, this implies that d
pn−2(p−1)

∈ {1, p} or

d = pn−2(p − 1) or pn−1(p − 1).

It therefore suffices to show that ap
n−2(p−1) 6≡ 1 (mod pn).

Now Euler’s Theorem implies

ap
n−3(p−1) ≡ 1 (mod pn−2) ⇒ ap

n−3(p−1) = 1 + kpn−2.

However, since a is a primitive root modulo pn−1, ap
n−3(p−1) 6≡ 1

(mod pn−1).

It follows that p ∤ k .
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By the Binomial Theorem we therefore have

ap
n−2(p−1) =

(

ap
n−3(p−1)

)p

= (1 + kpn−2)p

= 1 +

(

p

1

)

kpn−2 +

(

p

2

)

k2p2(n−2) + · · ·

· · ·+

(

p

p − 1

)

kp−1p(p−1)(n−2) + kppp(n−2)

≡ 1 + kpn−1 6≡ 1 (mod pn)

since
(

p
m

)

≡ 0 (mod p) for 1 ≤ m ≤ p − 1, p, n ≥ 3 and p ∤ k .

This is what we needed to show.
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Corollary 2

Let p an odd prime and let a ∈ Z be a primitive root modulo p.
Then either a or a+ p is a primitive modulo pn for all n ≥ 2.

Proof. By Theorem 2, either a or a + p is a primitive root modulo
p2. The result follows from Theorem 3 and a quick induction.

Examples.

Since 2 is a primitive root modulo 3 and 9, it is a primitive
root modulo 3n for all n ≥ 1.

Since 14 is a primitive root modulo 29 and 14 + 29 = 43 is a
primitive root modulo 292, 43 is a primitive root modulo 29n

for all n ≥ 2.
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Primitive Roots Modulo Composite Integers in General

We are almost ready completely classify the natural numbers n for
which there exist primitive roots.

Lemma 2

Let m, n ∈ N. Suppose that (m, n) = 1 and m, n ≥ 3. Then there
is no primitive root modulo mn.

Proof. Suppose that (a,mn) = 1. Then (a,m) = (a, n) = 1.

Since ϕ(m) and ϕ(n) are both even, Euler’s Theorem implies

a
ϕ(m)ϕ(n)

2 = (aϕ(m))
ϕ(n)
2 ≡ 1

ϕ(n)
2 ≡ 1 (mod m),

a
ϕ(m)ϕ(n)

2 = (aϕ(n))
ϕ(m)
2 ≡ 1

ϕ(m)
2 ≡ 1 (mod n).

Thus a
ϕ(m)ϕ(n)

2 ≡ 1 (mod mn), by the CRT.
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So the order of a modulo mn cannot exceed ϕ(m)ϕ(n)
2 .

But ϕ(m)ϕ(n)
2 = ϕ(mn)

2 < ϕ(mn).

So a cannot be a primitive root modulo mn.

We can now eliminate “most” composite numbers from
consideration.

Corollary 3

Let n ∈ N. Then n fails to have a primitive root if either:

1. n is divisible by two odd primes.

2. n = 2kpℓ, where k ≥ 2 and p is an odd prime.

Proof (Sketch). In both cases we can write n = ab with (a, b) = 1
and a, b ≥ 3.
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We now find that the only candidates for moduli for which
primitive roots exist are 2, 4, pk and 2pk , where p is an odd prime.

We’ve seen that primitive roots do, indeed, exist in the first three
cases.

It remains to address integers of the form 2pk , where p is an odd
prime.

Lemma 3

Let p be an odd prime. For any k ∈ N, there is a primitive root
modulo 2pk .

Proof. Let a be a primitive root modulo pk .

Since a ≡ a + pk (mod pk), a + pk is also a primitive root modulo
pk .

Since either a or a + pk is even, we can assume WLOG that a is
odd.
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Since (a, pk) = 1 by assumption, it follows that (a, 2pk) = 1.

We will show that a is a primitive root modulo 2pk .

Let r = |a+2pkZ|. By Lemma 1, ϕ(pk) = |a+ pkZ| must divide r .

But then we have ϕ(pk)|r |ϕ(2pk ) = ϕ(2)ϕ(pk ) = ϕ(pk).

Hence r = ϕ(pk) = ϕ(2pk), and we’re finished.
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We have achieved our complete classification!

Theorem 4

Let n ∈ N. There is a primitive root modulo n if and only if

n = 2, 4, pk , or 2pk ,

where p is an odd prime.

Remark. Euler, Lagarange, Legendre and Gauss all had a hand in
originally proving Theorem 4.

Legendre gave the first complete proof of the existence of primitive
roots modulo primes in 1785, and Gauss first proved Theorem 4 in
1801.
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Example

Let’s find a primitive root modulo 338 = 2 · 132.

Since ϕ(13) = 12 and

22 = 4, 23 = 8, 24 ≡ 3 (mod 13), 26 ≡ −1 (mod 13)

2 must be a primitive root modulo 13. And since

212 ≡ 40 6≡ 1 (mod 169),

2 must also be a primitive root modulo 169.

Since 2 is even, the proof of Lemma 3 tells us that 2 + 169 = 171
must be a primitive root modulo 338 (or modulo 2 · 13k).
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