Index Calculus and Power Residues

Ryan C. Daileda

Trinity University

Number Theory

The Exponential Map

Let $G=\langle a\rangle$ be a cyclic group of order m.
Since $a^{j}=a^{k}$ iff $j \equiv k(\bmod m)$, we find that the map

$$
\begin{aligned}
\exp _{a}: \mathbb{Z} / m \mathbb{Z} & \rightarrow G \\
k+m \mathbb{Z} & \mapsto a^{k}
\end{aligned}
$$

is a well-defined surjection.
Because $|\mathbb{Z} / m \mathbb{Z}|=m=|G|$, the pigeonhole principle implies that $\exp _{a}$ is actually a bijection.

Notice that

$$
\begin{aligned}
\exp _{a}((j+m \mathbb{Z}) & +(k+m \mathbb{Z}))=\exp _{a}((j+k)+m \mathbb{Z}) \\
& =a^{j+k}=a^{j} a^{k}=\exp _{a}(j+m \mathbb{Z}) \exp _{a}(k+m \mathbb{Z})
\end{aligned}
$$

This proves the following result.

Theorem 1

Let $G=\langle a\rangle$ be a cyclic group of order m. The map

$$
\exp _{a}: \mathbb{Z} / m \mathbb{Z} \rightarrow G
$$

is an additive-to-multiplicative group isomorphism.

Remarks.

- When $G=\langle a\rangle$ is an infinite cyclic group, a similar argument shows that the map $\exp _{a}: \mathbb{Z} \rightarrow G$ given by $\exp _{a}(k)=a^{k}$ is also an isomorphism.
- Together these result say that, up to isomorphism, the only cyclic groups are \mathbb{Z} and $\mathbb{Z} / m \mathbb{Z}$ for $m \in \mathbb{N}$.

The Index

The inverse of the exponential map $\exp _{a}$ is the discrete logarithm or index.
It is given by

$$
\begin{aligned}
\text { ind }_{a}: & G \rightarrow \mathbb{Z} / m \mathbb{Z}, \\
a^{k} & \mapsto k+m \mathbb{Z} .
\end{aligned}
$$

Because the inverse of an isomorphism is another isomorphism, we immediately have the following result.

Theorem 2 (Properties of the Index)

Suppose that $G=\langle a\rangle$ is a cyclic group. Then for all $x, y \in G$ one has:

1. $\operatorname{ind}_{a}(x y)=\operatorname{ind}_{a}(x)+\operatorname{ind}_{a}(y)$.
2. $\operatorname{ind}_{a}\left(x^{k}\right)=k \operatorname{ind}_{a}(x)$ for all $k \in \mathbb{Z}$.
3. $\operatorname{ind}_{a}(e)=0$ and $\operatorname{ind}_{a}(a)=1$.

Indices Relative to Primitive Roots

Let $n \in \mathbb{N}$. If n has a primitive root a, we can take

$$
G=(\mathbb{Z} / n \mathbb{Z})^{\times}=\langle a+n \mathbb{Z}\rangle
$$

Since $m=|G|=\varphi(n)$, in this case the index provides an isomorphism

$$
\operatorname{ind}_{a}:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \mathbb{Z} / \varphi(n) \mathbb{Z}
$$

Remarks.

- When n is understood, we will usually write $\operatorname{ind}_{a}(x)$ for $\operatorname{ind}_{a}(x+n \mathbb{Z})$, and will frequently represent $\operatorname{ind}_{a}(x)$ by any one of its members.
- Be aware that the textbook defines $\operatorname{ind}_{a}(x)$ to be the least nonnegative member of $\operatorname{ind}_{a}(x+n \mathbb{Z})$.

Example

Since $(\mathbb{Z} / 7 \mathbb{Z})^{\times}=\langle 3+7 \mathbb{Z}\rangle$ and

$$
\begin{aligned}
& 3^{2} \equiv 2(\bmod 7), 3^{3} \equiv 6(\bmod 7), \\
& 3^{4} \equiv 4(\bmod 7), 3^{5} \equiv 5(\bmod 7),
\end{aligned}
$$

we find that

$$
\begin{aligned}
& \operatorname{ind}_{3}(1)=0, \quad \operatorname{ind}_{3}(2)=2, \quad \operatorname{ind}_{3}(3)=1, \\
& \operatorname{ind}_{3}(4)=4, \quad \operatorname{ind}_{3}(5)=5, \quad \operatorname{ind}_{3}(6)=3,
\end{aligned}
$$

where it is understood that the arguments are defined modulo 7, and the outputs are defined modulo $\varphi(7)=6$.

kth Roots in a Cyclic Group

The index is handy for understanding " k th roots" in a cyclic group G.

Let $G=\langle a\rangle$ have order m, and take any $b \in G$.
For any $k \in \mathbb{Z}$, consider the equation $x^{k}=b$ in G.

If we take the index on both sides we obtain

$$
\operatorname{ind}_{a}\left(x^{k}\right)=k \operatorname{ind}_{a}(x)=\operatorname{ind}_{a}(b)
$$

in $\mathbb{Z} / m \mathbb{Z}$. This is a linear congruence modulo m in the variable $y=\operatorname{ind}_{a}(x)$.

It follows that there are precisely (k, m) values of ind $_{a}(x)$ modulo m iff $(k, m) \mid \operatorname{ind}_{a}(b)$. Thus:

Theorem 3

Let $G=\langle a\rangle$ be a cyclic group of order m, let $b \in G$ and let $k \in \mathbb{Z}$. The equation $x^{k}=b$ has precisely (k, m) solutions in G if and only if $(k, m) \mid \operatorname{ind}_{a}(b)$.

Example 1

Find all solutions of the congruence $x^{14} \equiv 133(\bmod 169)$.
Solution. The group $(\mathbb{Z} / 169 \mathbb{Z})^{\times}$is cyclic of size $\varphi(169)=13 \cdot 12=156$, with generator $2+169 \mathbb{Z}$.

Computing the first few powers of 2 modulo 169 we quickly find

$$
2^{16} \equiv 133 \quad(\bmod 169)
$$

Thus $\operatorname{ind}_{2}(133)=16$.
Since $(14,156)=2$ divides 16 , the congruence $x^{14} \equiv 133$ (mod 169) will have 2 incongruent solutions modulo 169.

To find them, we take the index on both sides and divide by 2 :
$14 \operatorname{ind}_{2}(x) \equiv \operatorname{ind}_{2}(133) \equiv 16(\bmod 156) \Leftrightarrow 7 \operatorname{ind}_{2}(x) \equiv 8(\bmod 78)$.
Since $7 \cdot 11=77 \equiv-1(\bmod 78)$, multiplication by -11 yields $\operatorname{ind}_{2}(x) \equiv-88 \equiv 68(\bmod 78) \Leftrightarrow \operatorname{ind}_{2}(x) \equiv 68,146(\bmod 156)$.

Thus the solutions are $x=2^{68}, 2^{146} \equiv 152,17(\bmod 169)$.

Because of the inherent difficulty in computing discrete logarithms, Theorem 3 is of limited practical utility, even if a generator of G is given.

However if we modify our approach, we can extract an efficient means of at least determining whether or not the equation $x^{k}=b$ has a solution.

Notice that if G is abelian with order m and $x^{k}=b$, then

$$
b^{m /(k, m)}=x^{k m /(k, m)}=\left(x^{m}\right)^{k /(k, m)}=e^{k /(k, m)}=e
$$

If G is cyclic, the converse is also true!

Suppose that $G=\langle a\rangle$ has order $m, b \in G$, and $b^{m /(k, m)}=e$.

Then

$$
0+m \mathbb{Z}=\operatorname{ind}_{a}(e)=\operatorname{ind}_{a}\left(b^{m /(k, m)}\right)=\frac{m}{(k, m)} \operatorname{ind}_{a}(b) .
$$

So if $\operatorname{ind}_{a}(b)=\ell+m \mathbb{Z}$, then

$$
\begin{aligned}
\frac{m \ell}{(m, k)} \equiv 0(\bmod m) & \Leftrightarrow m \ell \equiv 0(\bmod m(m, k)) \\
& \Leftrightarrow \ell \equiv 0(\bmod (m, k)) \\
& \Leftrightarrow \ell=r m+s k
\end{aligned}
$$

for some $r, s \in \mathbb{Z}$ (by Bézout's Lemma).

Thus

$$
b=a^{\ell}=a^{r m+s k}=\left(a^{m}\right)^{r}\left(a^{s}\right)^{k}=e^{r}\left(a^{s}\right)^{k}=\left(a^{s}\right)^{k},
$$

so that $x^{k}=b$ has the solution $x=a^{s}$.

Let's summarize our findings:

Theorem 4

Let G be a cyclic group of order m, let $b \in G$ and let $k \in \mathbb{Z}$. The equation $x^{k}=b$ has a solution in G if and only if $b^{m /(k, m)}=e$.

From now on we will take $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$for some n with a primitive root.

Power Residues

Definition

Let $n, k \in \mathbb{N}$ and $a \in \mathbb{Z}$. We say that a is an k th power residue of n provided $(a, n)=1$ and the congruence $x^{k} \equiv a(\bmod n)$ has a solution.

Applied to $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$, Theorem 4 yields the following immediate corollary concerning power residues.

Corollary 1

Let $n \in \mathbb{N}$ have a primitive root modulo n, and suppose $a \in \mathbb{Z}$ satisfies $(a, n)=1$. For any $k \in \mathbb{Z}$, a is a k th power residue of n if and only if $a^{\varphi(n) /(\varphi(n), k)} \equiv 1(\bmod n)$.

Proof. Because it is cyclic, we can take $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$, which has order $m=\varphi(n)$.

Example 2

Determine whether or not 193 is a 111th power residue of 298.

Solution. Since $298=2 \cdot 149$ and 149 is prime, primitive roots modulo 298 exist.

We have $\varphi(n)=\varphi(149)=148=2^{2} \cdot 37$ and $111=3 \cdot 37$ so that

$$
\frac{\varphi(n)}{(\varphi(n), 111)}=\frac{2^{2} \cdot 37}{37}=4
$$

One can easily show that $193^{4} \equiv 1(\bmod 298)$. So, by Corollary 1 , the congruence $x^{111} \equiv 193(\bmod 298)$ must have a solution.

Power Residues of Primes

Because primitive roots modulo primes always exist, Corollary 1 implies:

Corollary 2

Let $p \in \mathbb{N}$ be prime and suppose $a \in \mathbb{Z}$ satisfies $p \nmid a$. For any $k \in \mathbb{Z}$, a is a k th power residue of p if and only if

$$
a^{(p-1) /(p-1, k)} \equiv 1 \quad(\bmod p) .
$$

Proof. Since $\varphi(p)=p-1$ and $(a, p)=1$ iff $p \nmid a$, the result follows from Corollary 1.

When $k \in \mathbb{N}$ is small, we will refer to k th power residues as quadratic residues, cubic residues, quartic residues, etc.

An integer that is not a k th power residue will be called a k th power nonresidue.

From now on we will primarily be interested in quadratic residues modulo (odd) primes.

Because $(p-1,2)=2$ when p is odd, in this case Corollary 2 becomes:

Corollary 3 (Euler's Criterion)

Let $p \in \mathbb{N}$ be an odd prime and suppose $a \in \mathbb{Z}$ satisfies $p \nmid a$. Then a is a quadratic residue of p if and only if

$$
a^{(p-1) / 2} \equiv 1 \quad(\bmod p)
$$

Example 3

Show that 2 and 7 are quadratic residues of $p=457$, but that 5 is not.

Solution. We have $\frac{p-1}{2}=228$ and repeated squaring gives

$$
2^{228} \equiv 7^{228} \equiv 1(\bmod 457)
$$

while

$$
5^{228} \equiv 456 \equiv-1 \quad(\bmod 457)
$$

Now apply Euler's criterion.

$\sqrt{-1}$ Modulo p (Again)

Let p be an odd prime.

Since
$(-1)^{(p-1) / 2}=1 \Leftrightarrow \frac{p-1}{2} \equiv 0(\bmod 2) \Leftrightarrow p-1 \equiv 0(\bmod 4)$,
Euler's criterion tells us that -1 is a quadratic residue of p if and only if $p \equiv 1(\bmod 4)$.

We deduced this earlier as a consequence of Wilson's Theorem.

Quadratic Congruences

Let p be an odd prime and consider the quadratic congruence

$$
\begin{equation*}
a x^{2}+b x+c \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

where $a, b, c \in \mathbb{Z}$ and $p \nmid a$, which has discriminant $\Delta=b^{2}-4 a c$.

Theorem 5

Let p be an odd prime. If $p \nmid a$, the quadratic congruence (1) has solutions iff $p \mid \Delta$ or Δ is a quadratic residue of p. In this case, the solutions are given by the quadratic formula

$$
x \equiv \frac{-b \pm \sqrt{\Delta}}{2 a}(\bmod p)
$$

where $\sqrt{\Delta}$ denotes any solution to $x^{2} \equiv \Delta(\bmod p)$.

Proof

We follow the usual proof of the quadratic formula: complete the square and solve for x.

Suppose $x=r$ solves $a x^{2}+b x+c \equiv 0(\bmod p)$.
Because $p \nmid 2$, we can find $s \in \mathbb{Z}$ so that $2 s \equiv 1(\bmod p)$.
Likewise, we can find $t \in \mathbb{Z}$ so that at $\equiv 1(\bmod p)$.
We then have

$$
\begin{aligned}
a r^{2}+b r+c \equiv 0(\bmod p) & \Leftrightarrow t\left(a r^{2}+b r+c\right) \equiv 0(\bmod p) \\
& \Leftrightarrow r^{2}+b t r+c t \equiv 0(\bmod p) \\
& \Leftrightarrow(r+b s t)^{2}+c t-b^{2} s^{2} t^{2} \equiv 0(\bmod p)
\end{aligned}
$$

Thus, if the quadratic congruence has a solution, then

$$
(r+b s t)^{2} \equiv b^{2} s^{2} t^{2}-c t \equiv b^{2} s^{2} t^{2}-4 \operatorname{cas}^{2} t^{2} \equiv s^{2} t^{2} \Delta(\bmod p)
$$

Multiplying through by $(2 a)^{2}$ this becomes

$$
(2 a r+b)^{2} \equiv \Delta(\bmod p)
$$

Thus either $p \mid \Delta$ or Δ is a quadratic residue of p.
Suppose that $d^{2} \equiv \Delta(\bmod p)$. Then

$$
\begin{aligned}
(2 a r+b)^{2}-d^{2}= & ((2 a r+b)-d)((2 a r+b)+d) \equiv 0(\bmod p) \\
& \Leftrightarrow 2 a r+b \equiv \pm d(\bmod p)
\end{aligned}
$$

since p is prime.

It now follows that $2 a r \equiv-b \pm d(\bmod p)$, and multiplication by st yields

$$
r \equiv s t(-b \pm d) \equiv \frac{-b \pm \sqrt{\Delta}}{2 a}(\bmod p)
$$

since $s \equiv 2^{-1}(\bmod p)$ and $t \equiv a^{-1}(\bmod p)$. This proves one implication and establishes the quadratic formula.
For the converse, suppose that $\Delta \equiv d^{2}(\bmod p)$ and set

$$
r \equiv s t(-b \pm d)(\bmod p)
$$

Reversing our steps above yields

$$
(2 a r+b)^{2} \equiv d^{2} \equiv \Delta \equiv b^{2}-4 a c(\bmod p)
$$

Expanding the LHS and moving everything to the left we obtain

$$
0 \equiv 4 a^{2} r^{2}+4 a b r+4 a c \equiv 4 a\left(a r^{2}+b r+c\right)(\bmod p)
$$

Since $p \nmid 4 a$ and p is prime, this implies

$$
a r^{2}+b r+c \equiv 0(\bmod p)
$$

which proves that r solves the quadratic congruence.

Example 4

Solve the quadratic congruence $11 x^{2}+6 x+1 \equiv 0(\bmod 19)$.
Solution. We have

$$
\Delta=6^{2}-4 \cdot 11 \cdot 1=-8(\bmod 19)
$$

By Fermat's Little Theorem we have

$$
\begin{aligned}
\Delta^{(19-1) / 2} & =\Delta^{9} \equiv(-8)^{9} \equiv-2^{27} \equiv-2^{9}(\bmod 19) \\
& \equiv-2 \cdot 16 \cdot 16 \equiv(-2)(-3)(-3) \equiv-18 \equiv 1(\bmod 19)
\end{aligned}
$$

According to Euler's criterion Δ is therefore a quadratic residue of 19.

Thus the quadratic congruence has exactly two solutions modulo 19 , given by the quadratic formula.

Since $4 \cdot 19=76=7 \cdot 11-1,11^{-1} \equiv 7(\bmod 19)$.
Since $2 \cdot 10=20 \equiv 1(\bmod 19), 2^{-1} \equiv 10(\bmod 19)$.
And since $19+17=6^{2}$, we have

$$
2^{2} \cdot 6^{2} \equiv 2^{2} \cdot 17 \equiv 2^{2}(-2) \equiv \Delta(\bmod 19)
$$

so that $\sqrt{\Delta} \equiv 12(\bmod 19)$.

Finally, the quadratic formula yields
$x \equiv 7 \cdot 10 \cdot(-6 \pm 12) \equiv-6(-18),-6(6) \equiv-6,2 \equiv 2,13(\bmod 19)$.

Example 5

Solve the quadratic congruence $x^{2}+x+1 \equiv 0(\bmod 91)$.

Solution. Since $91=7 \cdot 13$, the CRT implies that the given congruence is equivalent to the system

$$
\begin{aligned}
& x^{2}+x+1 \equiv 0(\bmod 7) \\
& x^{2}+x+1 \equiv 0(\bmod 13)
\end{aligned}
$$

The discriminant is $\Delta=-3$, and we have

$$
\begin{aligned}
(-3)^{(7-1) / 2} & =(-3)^{3}=-27 \equiv 1(\bmod 7) \\
(-3)^{(13-1) / 2} & =(-3)^{6}=27^{2} \equiv 1^{2} \equiv 1(\bmod 13)
\end{aligned}
$$

Euler's criterion then implies that Δ is a quadratic residue of both 7 and 13 , so that the congruences making up our system have two solutions each.
The quadratic formula yields the solutions

$$
\begin{aligned}
& x \equiv 2,4(\bmod 7) \\
& x \equiv 3,9(\bmod 13)
\end{aligned}
$$

Piecing these back together in pairs using the CRT we arrive at the overall solutions

$$
x \equiv 9,16,81,64(\bmod 91)
$$

