
Index Calculus and Power Residues

Ryan C. Daileda

Trinity University

Number Theory

Daileda Indices and Power Residues



The Exponential Map

Let G = 〈a〉 be a cyclic group of order m.

Since aj = ak iff j ≡ k (mod m), we find that the map

expa : Z/mZ → G ,

k +mZ 7→ ak ,

is a well-defined surjection.

Because |Z/mZ| = m = |G |, the pigeonhole principle implies that
expa is actually a bijection.

Notice that

expa((j +mZ) + (k +mZ)) = expa((j + k) +mZ)

= aj+k = ajak = expa(j +mZ) expa(k +mZ).
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This proves the following result.

Theorem 1

Let G = 〈a〉 be a cyclic group of order m. The map

expa : Z/mZ → G

is an additive-to-multiplicative group isomorphism.

Remarks.

When G = 〈a〉 is an infinite cyclic group, a similar argument
shows that the map expa : Z → G given by expa(k) = ak is
also an isomorphism.

Together these result say that, up to isomorphism, the only

cyclic groups are Z and Z/mZ for m ∈ N.
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The Index

The inverse of the exponential map expa is the discrete logarithm

or index.
It is given by

inda : G → Z/mZ,

ak 7→ k +mZ.

Because the inverse of an isomorphism is another isomorphism, we
immediately have the following result.

Theorem 2 (Properties of the Index)

Suppose that G = 〈a〉 is a cyclic group. Then for all x , y ∈ G one

has:

1. inda(xy) = inda(x) + inda(y).

2. inda(x
k) = k inda(x) for all k ∈ Z.

3. inda(e) = 0 and inda(a) = 1.
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Indices Relative to Primitive Roots

Let n ∈ N. If n has a primitive root a, we can take

G = (Z/nZ)× = 〈a + nZ〉.

Since m = |G | = ϕ(n), in this case the index provides an
isomorphism

inda : (Z/nZ)
× → Z/ϕ(n)Z.

Remarks.

When n is understood, we will usually write inda(x) for
inda(x + nZ), and will frequently represent inda(x) by any one
of its members.

Be aware that the textbook defines inda(x) to be the least

nonnegative member of inda(x + nZ).
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Example

Since (Z/7Z)× = 〈3 + 7Z〉 and

32 ≡ 2 (mod 7), 33 ≡ 6 (mod 7),

34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7),

we find that

ind3(1) = 0, ind3(2) = 2, ind3(3) = 1,

ind3(4) = 4, ind3(5) = 5, ind3(6) = 3,

where it is understood that the arguments are defined modulo 7,
and the outputs are defined modulo ϕ(7) = 6.
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kth Roots in a Cyclic Group

The index is handy for understanding “kth roots” in a cyclic group
G .

Let G = 〈a〉 have order m, and take any b ∈ G .

For any k ∈ Z, consider the equation xk = b in G .

If we take the index on both sides we obtain

inda(x
k) = k inda(x) = inda(b)

in Z/mZ. This is a linear congruence modulo m in the variable
y = inda(x).
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It follows that there are precisely (k ,m) values of inda(x) modulo
m iff (k ,m)| inda(b). Thus:

Theorem 3

Let G = 〈a〉 be a cyclic group of order m, let b ∈ G and let k ∈ Z.
The equation xk = b has precisely (k ,m) solutions in G if and only

if (k ,m)| inda(b).

Example 1

Find all solutions of the congruence x14 ≡ 133 (mod 169).

Solution. The group (Z/169Z)× is cyclic of size
ϕ(169) = 13 · 12 = 156, with generator 2 + 169Z.
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Computing the first few powers of 2 modulo 169 we quickly find

216 ≡ 133 (mod 169).

Thus ind2(133) = 16.

Since (14, 156) = 2 divides 16, the congruence x14 ≡ 133
(mod 169) will have 2 incongruent solutions modulo 169.

To find them, we take the index on both sides and divide by 2:

14 ind2(x) ≡ ind2(133) ≡ 16 (mod 156) ⇔ 7 ind2(x) ≡ 8 (mod 78).

Since 7 · 11 = 77 ≡ −1 (mod 78), multiplication by −11 yields

ind2(x) ≡ −88 ≡ 68 (mod 78) ⇔ ind2(x) ≡ 68, 146 (mod 156).

Thus the solutions are x = 268, 2146 ≡ 152, 17 (mod 169).
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Because of the inherent difficulty in computing discrete logarithms,
Theorem 3 is of limited practical utility, even if a generator of G is
given.

However if we modify our approach, we can extract an efficient
means of at least determining whether or not the equation xk = b

has a solution.

Notice that if G is abelian with order m and xk = b, then

bm/(k,m) = xkm/(k,m) = (xm)k/(k,m) = ek/(k,m) = e.

If G is cyclic, the converse is also true!
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Suppose that G = 〈a〉 has order m, b ∈ G , and bm/(k,m) = e.

Then

0 +mZ = inda(e) = inda(b
m/(k,m)) =

m

(k ,m)
inda(b).

So if inda(b) = ℓ+mZ, then

mℓ

(m, k)
≡ 0 (mod m) ⇔ mℓ ≡ 0 (mod m(m, k))

⇔ ℓ ≡ 0 (mod (m, k))

⇔ ℓ = rm + sk

for some r , s ∈ Z (by Bézout’s Lemma).
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Thus

b = aℓ = arm+sk = (am)r (as)k = er (as)k = (as)k ,

so that xk = b has the solution x = as .

Let’s summarize our findings:

Theorem 4

Let G be a cyclic group of order m, let b ∈ G and let k ∈ Z. The
equation xk = b has a solution in G if and only if bm/(k,m) = e.

From now on we will take G = (Z/nZ)× for some n with a
primitive root.
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Power Residues

Definition

Let n, k ∈ N and a ∈ Z. We say that a is an kth power residue of

n provided (a, n) = 1 and the congruence xk ≡ a (mod n) has a
solution.

Applied to G = (Z/nZ)×, Theorem 4 yields the following
immediate corollary concerning power residues.

Corollary 1

Let n ∈ N have a primitive root modulo n, and suppose a ∈ Z
satisfies (a, n) = 1. For any k ∈ Z, a is a kth power residue of n if

and only if aϕ(n)/(ϕ(n),k) ≡ 1 (mod n).

Proof. Because it is cyclic, we can take G = (Z/nZ)×, which has
order m = ϕ(n).
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Example 2

Determine whether or not 193 is a 111th power residue of 298.

Solution. Since 298 = 2 · 149 and 149 is prime, primitive roots
modulo 298 exist.

We have ϕ(n) = ϕ(149) = 148 = 22 · 37 and 111 = 3 · 37 so that

ϕ(n)

(ϕ(n), 111)
=

22 · 37
37

= 4.

One can easily show that 1934 ≡ 1 (mod 298). So, by Corollary 1,
the congruence x111 ≡ 193 (mod 298) must have a solution.
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Power Residues of Primes

Because primitive roots modulo primes always exist, Corollary 1
implies:

Corollary 2

Let p ∈ N be prime and suppose a ∈ Z satisfies p ∤ a. For any
k ∈ Z, a is a kth power residue of p if and only if

a(p−1)/(p−1,k) ≡ 1 (mod p).

Proof. Since ϕ(p) = p − 1 and (a, p) = 1 iff p ∤ a, the result
follows from Corollary 1.
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When k ∈ N is small, we will refer to kth power residues as
quadratic residues, cubic residues, quartic residues, etc.

An integer that is not a kth power residue will be called a kth
power nonresidue.

From now on we will primarily be interested in quadratic residues
modulo (odd) primes.

Because (p − 1, 2) = 2 when p is odd, in this case Corollary 2
becomes:

Corollary 3 (Euler’s Criterion)

Let p ∈ N be an odd prime and suppose a ∈ Z satisfies p ∤ a. Then
a is a quadratic residue of p if and only if

a(p−1)/2 ≡ 1 (mod p).
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Example 3

Show that 2 and 7 are quadratic residues of p = 457, but that 5 is
not.

Solution. We have p−1
2 = 228 and repeated squaring gives

2228 ≡ 7228 ≡ 1 (mod 457),

while
5228 ≡ 456 ≡ − 1 (mod 457).

Now apply Euler’s criterion.
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√
−1 Modulo p (Again)

Let p be an odd prime.

Since

(−1)(p−1)/2 = 1 ⇔ p − 1

2
≡ 0 (mod 2) ⇔ p− 1 ≡ 0 (mod 4),

Euler’s criterion tells us that −1 is a quadratic residue of p if and
only if p ≡ 1 (mod 4).

We deduced this earlier as a consequence of Wilson’s Theorem.
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Quadratic Congruences

Let p be an odd prime and consider the quadratic congruence

ax2 + bx + c ≡ 0 (mod p), (1)

where a, b, c ∈ Z and p ∤ a, which has discriminant ∆ = b2 − 4ac .

Theorem 5

Let p be an odd prime. If p ∤ a, the quadratic congruence (1) has
solutions iff p|∆ or ∆ is a quadratic residue of p. In this case, the

solutions are given by the quadratic formula

x ≡ −b ±
√
∆

2a
(mod p),

where
√
∆ denotes any solution to x2 ≡ ∆ (mod p).
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Proof

We follow the usual proof of the quadratic formula: complete the
square and solve for x .

Suppose x = r solves ax2 + bx + c ≡ 0 (mod p).

Because p ∤ 2, we can find s ∈ Z so that 2s ≡ 1 (mod p).

Likewise, we can find t ∈ Z so that at ≡ 1 (mod p).

We then have

ar2 + br + c ≡ 0 (mod p) ⇔ t(ar2 + br + c) ≡ 0 (mod p)

⇔ r2 + btr + ct ≡ 0 (mod p)

⇔ (r + bst)2 + ct − b2s2t2 ≡ 0 (mod p)
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Thus, if the quadratic congruence has a solution, then

(r + bst)2 ≡ b2s2t2 − ct ≡ b2s2t2 − 4cas2t2 ≡ s2t2∆ (mod p).

Multiplying through by (2a)2 this becomes

(2ar + b)2 ≡ ∆ (mod p).

Thus either p|∆ or ∆ is a quadratic residue of p.

Suppose that d2 ≡ ∆ (mod p). Then

(2ar + b)2 − d2 = ((2ar + b)− d)((2ar + b) + d) ≡ 0 (mod p)

⇔ 2ar + b ≡ ±d (mod p),

since p is prime.
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It now follows that 2ar ≡ −b ± d (mod p), and multiplication by
st yields

r ≡ st(−b ± d) ≡ −b ±
√
∆

2a
(mod p),

since s ≡ 2−1 (mod p) and t ≡ a−1 (mod p). This proves one
implication and establishes the quadratic formula.
For the converse, suppose that ∆ ≡ d2 (mod p) and set

r ≡ st(−b ± d) (mod p).

Reversing our steps above yields

(2ar + b)2 ≡ d2 ≡ ∆ ≡ b2 − 4ac (mod p).

Expanding the LHS and moving everything to the left we obtain

0 ≡ 4a2r2 + 4abr + 4ac ≡ 4a(ar2 + br + c) (mod p).

Daileda Indices and Power Residues



Since p ∤ 4a and p is prime, this implies

ar2 + br + c ≡ 0 (mod p),

which proves that r solves the quadratic congruence.

Example 4

Solve the quadratic congruence 11x2 + 6x + 1 ≡ 0 (mod 19).

Solution. We have

∆ = 62 − 4 · 11 · 1 = −8 (mod 19).

By Fermat’s Little Theorem we have

∆(19−1)/2 = ∆9 ≡ (−8)9 ≡ −227 ≡ −29 (mod 19)

≡ −2 · 16 · 16 ≡ (−2)(−3)(−3) ≡ −18 ≡ 1 (mod 19).
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According to Euler’s criterion ∆ is therefore a quadratic residue of
19.

Thus the quadratic congruence has exactly two solutions modulo
19, given by the quadratic formula.

Since 4 · 19 = 76 = 7 · 11− 1, 11−1 ≡ 7 (mod 19).

Since 2 · 10 = 20 ≡ 1 (mod 19), 2−1 ≡ 10 (mod 19).

And since 19 + 17 = 62, we have

22 · 62 ≡ 22 · 17 ≡ 22(−2) ≡ ∆ (mod 19),

so that
√
∆ ≡ 12 (mod 19).
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Finally, the quadratic formula yields

x ≡ 7 ·10 · (−6±12) ≡ −6(−18),−6(6) ≡ −6, 2 ≡ 2, 13 (mod 19).

Example 5

Solve the quadratic congruence x2 + x + 1 ≡ 0 (mod 91).

Solution. Since 91 = 7 · 13, the CRT implies that the given
congruence is equivalent to the system

x2 + x + 1 ≡ 0 (mod 7),

x2 + x + 1 ≡ 0 (mod 13).
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The discriminant is ∆ = −3, and we have

(−3)(7−1)/2 = (−3)3 = −27 ≡ 1 (mod 7),

(−3)(13−1)/2 = (−3)6 = 272 ≡ 12 ≡ 1 (mod 13).

Euler’s criterion then implies that ∆ is a quadratic residue of both
7 and 13, so that the congruences making up our system have two
solutions each.
The quadratic formula yields the solutions

x ≡ 2, 4 (mod 7),

x ≡ 3, 9 (mod 13).

Piecing these back together in pairs using the CRT we arrive at the
overall solutions

x ≡ 9, 16, 81, 64 (mod 91).
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