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The Exponential Map

Let G = (a) be a cyclic group of order m.
Since & = ak iff j = k (mod m), we find that the map

exp, : Z/mZ — G,
k+ mZ s a*,

is a well-defined surjection.

Because |Z/mZ| = m = |G|, the pigeonhole principle implies that
exp, is actually a bijection.

Notice that

exp,((J + mZ) + (k+ mZ)) = exp,((j + k) + mZ)
=tk = Jak = exp,(j + mZ) exp,(k + mZ).
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This proves the following result.

Let G = (a) be a cyclic group of order m. The map

exp,: Z/mZ — G
is an additive-to-multiplicative group isomorphism.

Remarks.

@ When G = (a) is an infinite cyclic group, a similar argument
shows that the map exp, : Z — G given by exp,(k) = a¥ is

also an isomorphism.

@ Together these result say that, up to isomorphism, the only
cyclic groups are Z and Z/mZ for m € N.
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The Index

The inverse of the exponential map exp, is the discrete logarithm
or index.
It is given by

ind, : G — Z/mZ,

a* — k + mZ.

Because the inverse of an isomorphism is another isomorphism, we
immediately have the following result.

Theorem 2 (Properties of the Index)

Suppose that G = (a) is a cyclic group. Then for all x,y € G one
has:

1. inda(xy) = inda(x) + ind4(y).
2. ind,(x*) = kind,(x) for all k € Z.
3. ind,(e) =0 and ind,(a) = 1.
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Indices Relative to Primitive Roots

Let n € N. If n has a primitive root a, we can take

G =(Z/nZ)* = {(a+ nZ).

Since m = |G| = ¢(n), in this case the index provides an
isomorphism
ind, : (Z/nZ)* — Z]p(n)Z.

Remarks.

@ When n is understood, we will usually write ind,(x) for
inda(x + nZ), and will frequently represent ind,(x) by any one
of its members.

@ Be aware that the textbook defines ind,(x) to be the /east
nonnegative member of ind,(x + nZ).
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Since (Z/7Z2)* = (3+ 7Z) and
32 =2 (mod 7), 3° =6 (mod 7),
3* =4 (mod 7), 3° =5 (mod 7),
we find that

inds(1) = 0, inds(2) = 2, ind3(3) = 1,
ind3(4) = 4, ind3(5) =5, ind3(6) = 3,

where it is understood that the arguments are defined modulo 7,
and the outputs are defined modulo ¢(7) = 6.
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kth Roots in a Cyclic Group

The index is handy for understanding “kth roots” in a cyclic group

G.
Let G = (a) have order m, and take any b € G.
For any k € Z, consider the equation x* = b in G.

If we take the index on both sides we obtain
ind,(x*) = kind,(x) = ind,(b)
in Z/mZ. This is a linear congruence modulo m in the variable

y = ind,(x).
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It follows that there are precisely (k, m) values of ind,(x) modulo
m iff (k, m)|ind,(b). Thus:

Let G = (a) be a cyclic group of order m, let b € G and let k € Z.
The equation x* = b has precisely (k, m) solutions in G if and only
if (k, m)|ind,(b).

Find all solutions of the congruence x'* = 133 (mod 169).

Solution. The group (Z/169Z)* is cyclic of size
©(169) = 13 - 12 = 156, with generator 2 + 169Z.
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Computing the first few powers of 2 modulo 169 we quickly find
210 =133 (mod 169).
Thus ind»(133) = 16.

Since (14,156) = 2 divides 16, the congruence x4 = 133
(mod 169) will have 2 incongruent solutions modulo 169.

To find them, we take the index on both sides and divide by 2:
14ind2(x) = ind2(133) = 16 (mod 156) < 7indz(x) =8 (mod 78).
Since 7-11 =77 = —1 (mod 78), multiplication by —11 yields
ind2(x) = —88 = 68 (mod 78) < indy(x) = 68,146 (mod 156).

Thus the solutions are x = 268 2146 =152 17 (mod 169). O
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Because of the inherent difficulty in computing discrete logarithms,
Theorem 3 is of limited practical utility, even if a generator of G is
given.

However if we modify our approach, we can extract an efficient
means of at least determining whether or not the equation x* = b
has a solution.

Notice that if G is abelian with order m and xX = b, then

bm/(k,m) — ka/(k,m) — (Xm)k/(k,m) — ek/(k,m) —e.

If G is cyclic, the converse is also true!
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Suppose that G = (a) has order m, b € G, and b™/(km) — ¢

Then

0+ mZ = ind,(e) = inda(b’"/(k’m)) _

= ind,(b).

So if ind,(b) = ¢ + mZ, then

(m. &) =0 (mod m) < ml=0 (mod m(m,k))

< (=0 (mod (m, k))
& L=rm+ sk

for some r,s € Z (by Bézout's Lemma).
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Thus
b= aé — arm—i—sk — (am)r(aS)k — er(aS)k — (aS)k’
so that xX = b has the solution x = a°.

Let's summarize our findings:

Theorem 4

Let G be a cyclic group of order m, let b € G and let k € Z. The
equation xX = b has a solution in G if and only if b™ (kM) — .

From now on we will take G = (Z/nZ)* for some n with a
primitive root.
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Power Residues

Definition

Let n,k € N and a € Z. We say that a is an kth power residue of
n provided (a,n) = 1 and the congruence x¥ = a (mod n) has a
solution.

Applied to G = (Z/nZ)*, Theorem 4 yields the following
immediate corollary concerning power residues.

Let n € N have a primitive root modulo n, and suppose a € Z
satisfies (a,n) = 1. For any k € Z, a is a kth power residue of n if
and only if a#(M/(@(N:k) =1 (mod n).

Proof. Because it is cyclic, we can take G = (Z/nZ)*, which has
order m = ¢(n). O
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Determine whether or not 193 is a 111th power residue of 298.

Solution. Since 298 = 2 - 149 and 149 is prime, primitive roots
modulo 298 exist.

We have p(n) = ¢(149) = 148 = 22.37 and 111 = 3- 37 so that

©(n) B 22.37 B

(p(n),111) 37 +

One can easily show that 193* = 1 (mod 298). So, by Corollary 1,
the congruence x!1! =193 (mod 298) must have a solution. O
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Power Residues of Primes

Because primitive roots modulo primes always exist, Corollary 1
implies:

Let p € N be prime and suppose a € 7 satisfies p t a. For any
k € Z, a is a kth power residue of p if and only if

aP=1/(P=Lk) =1 (mod p).

Proof. Since ¢(p) = p—1 and (a,p) = 1 iff p1 a, the result
follows from Corollary 1. O
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When k € N is small, we will refer to kth power residues as
quadratic residues, cubic residues, quartic residues, etc.

An integer that is not a kth power residue will be called a kth
power nonresidue.

From now on we will primarily be interested in quadratic residues
modulo (odd) primes.

Because (p — 1,2) = 2 when p is odd, in this case Corollary 2
becomes:

Corollary 3 (Euler’s Criterion)

Let p € N be an odd prime and suppose a € 7Z satisfies pt a. Then
a is a quadratic residue of p if and only if

aP V2 =1 (mod p).
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Show that 2 and 7 are quadratic residues of p = 457, but that 5 is
not.

Solution. We have p%l = 228 and repeated squaring gives

2228 = 7228 = 1 (mod 457),

while
5228 =456 = —1 (mod 457).

Now apply Euler’s criterion. O
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v/—1 Modulo p (Again)

Let p be an odd prime.

Since

(-)PV2 =1 & p%l =0(mod2) & p—1=0(mod4),

Euler’s criterion tells us that —1 is a quadratic residue of p if and
only if p=1 (mod 4).

We deduced this earlier as a consequence of Wilson's Theorem.
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Quadratic Congruences

Let p be an odd prime and consider the quadratic congruence
ax?> 4+ bx + ¢ = 0 (mod p), (1)
where a, b, c € Z and pt a, which has discriminant A = b? — 4ac.

Theorem 5

Let p be an odd prime. If p 1 a, the quadratic congruence (1) has
solutions iff p|A or A is a quadratic residue of p. In this case, the
solutions are given by the quadratic formula

—b+ VA
a

XS —o (mod p),

where \/IA denotes any solution to x> = A (mod p).

v
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Proof

We follow the usual proof of the quadratic formula: complete the
square and solve for x.

Suppose x = r solves ax? + bx + ¢ =0 (mod p).
Because p 12, we can find s € Z so that 2s =1 (mod p).
Likewise, we can find t € Z so that at =1 (mod p).

We then have

ar’ + br + ¢ =0 (mod p) < t(ar® + br+c) =0 (mod p)
& 24 btr+ct =0 (mod p)
& (r+ bst)? + ct — b*s*t> = 0 (mod p)
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Thus, if the quadratic congruence has a solution, then

(r + bst)? = b*s*t? — ct = b>s*t? — 4cas®t? = s>t>A (mod p).

Multiplying through by (2a)? this becomes

(2ar + b)®> = A (mod p).
Thus either p|A or A is a quadratic residue of p.
Suppose that d?> = A (mod p). Then

(2ar + b)?> — d? = ((2ar + b) — d)((2ar + b) +d) =0 (mod p)
& 2ar+ b= +d (mod p),

since p is prime.
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It now follows that 2ar = —b+ d (mod p), and multiplication by

st yields
—b+ VA
r=st(—b+d)= b? (mod p),

since s =271 (mod p) and t = a=! (mod p). This proves one
implication and establishes the quadratic formula.
For the converse, suppose that A = d? (mod p) and set

1

r = st(—b =+ d) (mod p).
Reversing our steps above yields
(2ar + b)? = d?> = A = b? — 4ac (mod p).
Expanding the LHS and moving everything to the left we obtain

0 = 4a%r® + 4abr + 4ac = 4a(ar® + br + c) (mod p).
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Since p{4a and p is prime, this implies
ar®> 4 br + ¢ =0 (mod p),

which proves that r solves the quadratic congruence. U

Example 4

Solve the quadratic congruence 11x? + 6x +1 =0 (mod 19).

Solution. We have
A=6>—4-11-1= —8 (mod 19).
By Fermat's Little Theorem we have

A19-D/2 — A9 = (—8)° = —2%" = —29 (mod 19)
=_2.16 16 = (—2)(=3)(—3) = —18 = 1 (mod 19).
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According to Euler's criterion A is therefore a quadratic residue of
19.

Thus the quadratic congruence has exactly two solutions modulo
19, given by the quadratic formula.

Since4-19=76=7-11-1, 1171 =7 (mod 19).
Since 2-10 =20 =1 (mod 19), 271 =10 (mod 19).

And since 19 + 17 = 62, we have
22.62=22.17=2%(-2) = A (mod 19),

so that v/A =12 (mod 19).
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Finally, the quadratic formula yields
x=7-10-(-6+12) = —6(—18),—6(6) = —6,2 = 2,13 (mod 19).

O

Solve the quadratic congruence x> + x +1 =0 (mod 91).

Solution. Since 91 = 7 - 13, the CRT implies that the given
congruence is equivalent to the system

x> 4+ x+1=0 (mod 7),
x> 4 x+1=0 (mod 13).
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The discriminant is A = —3, and we have

(=3)71/2 = (=3)3 = —27 =1 (mod 7),

(=3)13-D/2 = (_3)® =272 = 12 = 1 (mod 13).
Euler's criterion then implies that A is a quadratic residue of both
7 and 13, so that the congruences making up our system have two

solutions each.
The quadratic formula yields the solutions

x =2,4 (mod 7),
x = 3,9 (mod 13).

Piecing these back together in pairs using the CRT we arrive at the
overall solutions

x =9,16,81,64 (mod 91).
]
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