The Legendre Symbol and Its Properties

Ryan C. Daileda

Trinity University

Number Theory

Introduction

Today we will begin moving toward the Law of Quadratic Reciprocity, which gives an explicit relationship between the congruences $x^{2} \equiv q(\bmod p)$ and $x^{2} \equiv p(\bmod q)$ for distinct odd primes p, q.

Our main tool will be the Legendre symbol, which is essentially the indicator function of the quadratic residues of p.

We will relate the Legendre symbol to indices and Euler's criterion, and prove Gauss' Lemma, which reduces the computation of the Legendre symbol to a counting problem.

Along the way we will prove the Supplementary Quadratic Reciprocity Laws which concern the congruences $x^{2} \equiv-1$ $(\bmod p)$ and $x^{2} \equiv 2(\bmod p)$.

The Legendre Symbol

Recall. Given an odd prime p and an integer a with $p \nmid a$, we say a is a quadratic residue of p iff the congruence $x^{2} \equiv a(\bmod p)$ has a solution.

Definition

Let p be an odd prime. For $a \in \mathbb{Z}$ with $p \nmid a$ we define the Legendre symbol to be

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue of } p \\ -1 & \text { otherwise }\end{cases}
$$

Remark. It is customary to define $\left(\frac{a}{p}\right)=0$ if $p \mid a$.

Let p be an odd prime.
Notice that if $a \equiv b(\bmod p)$, then the congruence $x^{2} \equiv a$ $(\bmod p)$ has a solution if and only if $x^{2} \equiv b(\bmod p)$ does.

And $p \mid a$ if and only if $p \mid b$.
Thus $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$ whenever $a \equiv b(\bmod p)$.
It follows that we can view the Legendre symbol as a function

$$
\left(\frac{\cdot}{p}\right): \mathbb{Z} / p \mathbb{Z} \rightarrow\{0, \pm 1\}
$$

by letting it act on representatives, i.e. $\left(\frac{a+p \mathbb{Z}}{p}\right)=\left(\frac{a}{p}\right)$.

Example

Let $p=11$. Direct computation yields the table

$$
\begin{array}{c|cccccccccc}
x(\bmod 11) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline x^{2}(\bmod 11) & 1 & 4 & 9 & 5 & 3 & 3 & 5 & 9 & 4 & 1
\end{array}
$$

Thus

$$
\left(\frac{1}{11}\right)=\left(\frac{3}{11}\right)=\left(\frac{4}{11}\right)=\left(\frac{5}{11}\right)=\left(\frac{9}{11}\right)=1
$$

and

$$
\left(\frac{2}{11}\right)=\left(\frac{6}{11}\right)=\left(\frac{7}{11}\right)=\left(\frac{8}{11}\right)=\left(\frac{10}{11}\right)=-1
$$

Euler's Criterion Revisited

Let p be an odd prime. Recall Euler's Criterion, which states that if $p \nmid a$, then a is a quadratic residue if and only if

$$
a^{(p-1) / 2} \equiv 1(\bmod p) .
$$

It turns out that Euler's criterion also nicely classifies the quadratic nonresidues.
Let r be a primitive root modulo p. Since

$$
1 \equiv r^{p-1} \equiv\left(r^{(p-1) / 2}\right)^{2}(\bmod p)
$$

$r^{(p-1) / 2}$ solves the congruence $x^{2}-1 \equiv 0(\bmod p)$.
Clearly $x= \pm 1$ are two incongruent solutions of the same congruence.

Lagrange's theorem implies that these are the only solutions modulo p.

Thus $r^{(p-1) / 2} \equiv \pm 1(\bmod p)$.
But r has order $p-1$ modulo p, so $r^{(p-1) / 2} \not \equiv 1(\bmod p)$.
Therefore $r^{(p-1) / 2} \equiv-1(\bmod p)$.
Now suppose $p \nmid a$. Then $r^{k} \equiv a(\bmod p)$, where $k \in \operatorname{ind}_{r}(a)$. Hence

$$
a^{(p-1) / 2} \equiv\left(r^{k}\right)^{(p-1) / 2} \equiv\left(r^{(p-1) / 2}\right)^{k} \equiv(-1)^{\text {ind }_{r}(a)}(\bmod p)
$$

Remark. Every element of $\operatorname{ind}_{r}(a)$ has the same parity since $p-1$ is even. So we are free to choose any representative when computing $(-1)^{\text {ind }_{r}(a)}$.

Now recall that the congruence $x^{2} \equiv a(\bmod p)$ has a solution iff $(p-1,2)=2 \mid \operatorname{ind}_{r}(a)$.

Thus, a is a quadratic residue of p iff $\operatorname{ind}_{r}(a)$ is even iff $(-1)^{\operatorname{ind}_{r}(a)}=1$.
And a is a quadratic nonresidue of p iff $(-1)^{\text {ind }_{r}(a)}=-1$. This proves:

Theorem 1 (Strong Euler's Criterion)

Let p be an odd prime and let r be a primitive root modulo p. If $p \nmid a$, then

$$
\left(\frac{a}{p}\right)=(-1)^{\operatorname{ind}_{r}(a)} \equiv a^{(p-1) / 2}(\bmod p)
$$

Remark. Note that the congruence $a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)(\bmod p)$ also holds when $p \mid a$, as both sides of the congruence are simply 0 .

The connection between the Legendre symbol and the index immediately yields:

Theorem 2 (Properties of the Legendre Symbol)

Let p be an odd prime and suppose $p \nmid a$ and $p \nmid b$. Then:

1. $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
2. $\left(\frac{1}{p}\right)=1$ and $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$.

Remark. The multiplicativity relationship in 1 automatically holds if $p \mid a$ or $p \mid b$ (why?).

Proof. Let r be a primitive root modulo p.
Because the index relative to r is a multiplicative to additive isomorphism, we have

$$
\begin{aligned}
\left(\frac{a b}{p}\right) & =(-1)^{\operatorname{ind}_{r}(a b)}=(-1)^{\operatorname{ind}_{r}(a)+\operatorname{ind}_{r}(b)} \\
& =(-1)^{\operatorname{ind}_{r}(a)}(-1)^{\operatorname{ind}_{r}(b)}=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
\end{aligned}
$$

Since $r^{(p-1) / 2} \equiv-1(\bmod p)$, we have

$$
\left(\frac{-1}{p}\right)=(-1)^{\operatorname{ind}_{r}(-1)}=(-1)^{(p-1) / 2}
$$

And since $\operatorname{ind}_{r}(1)=0$, we also have $\left(\frac{1}{p}\right)=(-1)^{0}=1$.

Example

Let's evaluate $\left(\frac{-72}{131}\right)$. We have

$$
\begin{aligned}
\left(\frac{-72}{131}\right) & =\left(\frac{-2 \cdot 6^{2}}{131}\right)=\left(\frac{-1}{131}\right)\left(\frac{6^{2}}{131}\right)\left(\frac{2}{131}\right) \\
& =(-1)^{(131-1) / 2}\left(\frac{2}{131}\right)=-\left(\frac{2}{131}\right)
\end{aligned}
$$

We now appeal to Euler's criterion:

$$
\begin{aligned}
-\left(\frac{2}{131}\right) & \equiv-2^{(131-1) / 2} \equiv-2^{65} \equiv-\left(2^{7}\right)^{9} 2^{2} \equiv-(128)^{9} \cdot 4(\bmod 13 \\
& \equiv-(-3)^{9} \cdot 4 \equiv 3 \cdot(162)^{2} \equiv 3 \cdot 31^{2} \equiv 3 \cdot 44(\bmod 131) \\
& \equiv 132 \equiv 1(\bmod 131)
\end{aligned}
$$

Hence $\left(\frac{-72}{131}\right)=1$.

The next result generalizes to arbitrary nontrivial Dirichlet characters modulo n.

Theorem 3

If p is an odd prime, then $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0$. In particular, there are exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic nonresidues modulo p.

Proof. This can be proved in a number of ways. We opt for the most generalizable argument.
Let r be a primitive root $\bmod p$. Then $\left(\frac{r}{p}\right)=(-1)^{\operatorname{ind}_{r}(r)}=-1$.
Let $S=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)$.

Since left translation by $r+p \mathbb{Z}$ simply permutes the elements of the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$, and $\left(\frac{a}{p}\right)$ depends only on the congruence class of a modulo p, we find that

$$
\begin{aligned}
-S & =\left(\frac{r}{p}\right) S=\sum_{a=1}^{p-1}\left(\frac{r a}{p}\right)=\sum_{a=1}^{p-1}\left(\frac{r a+p \mathbb{Z}}{p}\right) \\
& =\sum_{a=1}^{p-1}\left(\frac{(r+p \mathbb{Z})(a+p \mathbb{Z})}{p}\right)=\sum_{a+p \mathbb{Z} \in(\mathbb{Z} / p \mathbb{Z})^{\times}}\left(\frac{(r+p \mathbb{Z})(a+p \mathbb{Z})}{p}\right) \\
& =\sum_{a+p \mathbb{Z} \in(\mathbb{Z} / p \mathbb{Z})^{\times}}\left(\frac{a+p \mathbb{Z}}{p}\right)=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=S .
\end{aligned}
$$

Hence $2 S=0$, which implies $S=0$.

Gauss' Lemma

If p is an odd prime, then $(\mathbb{Z} / p \mathbb{Z})^{\times}$is the disjoint union of

$$
L=\left\{r+p \mathbb{Z} \left\lvert\, 1 \leq r<\frac{p}{2}\right.\right\}
$$

and

$$
R=\left\{r+p \mathbb{Z} \left\lvert\, \frac{p}{2}<r \leq p-1\right.\right\}
$$

Notice that $\frac{p}{2}<r \leq p-1$ iff $-\frac{p}{2}>-r \geq 1-p$ iff $\frac{p}{2}>p-r \geq 1$.
Thus

$$
\begin{aligned}
-R & =\left\{-r+p \mathbb{Z} \left\lvert\, \frac{p}{2}<r \leq p-1\right.\right\} \\
& =\left\{(p-r)+p \mathbb{Z} \left\lvert\, \frac{p}{2}<r \leq p-1\right.\right\} \\
& =\left\{r+p \mathbb{Z} \left\lvert\, 1 \leq r<\frac{p}{2}\right.\right\}=L .
\end{aligned}
$$

Suppose $p \nmid a$. Define $T_{a}: L \rightarrow L$ by

$$
T_{a}(r+p \mathbb{Z})= \begin{cases}a r+p \mathbb{Z} & \text { if } a r+p \mathbb{Z} \in L \\ -a r+p \mathbb{Z} & \text { if } a r+p \mathbb{Z} \in R\end{cases}
$$

We claim that T_{a} is a bijection.
Because L is finite it suffices to prove T_{a} is one-to-one.
So suppose $T_{a}(r+p \mathbb{Z})=T_{a}(s+p \mathbb{Z})$. Then $a r+p \mathbb{Z}= \pm a s+p \mathbb{Z}$.
Since $p \nmid a, a+p \mathbb{Z} \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Multiplication by $(a+p \mathbb{Z})^{-1}$ then yields

$$
r+p \mathbb{Z}= \pm s+p \mathbb{Z}
$$

Since $-s+p \mathbb{Z} \in R$ and $L \cap R=\varnothing$, we must have $r+p \mathbb{Z}=s+p \mathbb{Z}$.
Thus T_{a} is one-to-one, as claimed, and hence a bijection.

It follows that

$$
\begin{aligned}
\prod_{r+p \mathbb{Z} \in L}(r+p \mathbb{Z}) & =\prod_{r+p \mathbb{Z} \in L} T_{a}(r+p \mathbb{Z}) \\
& =(-1)^{n} \prod_{r+p \mathbb{Z} \in L}(a r+p \mathbb{Z}) \\
& =(-1)^{n}(a+p \mathbb{Z})^{(p-1) / 2} \prod_{r+p \mathbb{Z} \in L}(r+p \mathbb{Z}),
\end{aligned}
$$

where n is the number of $r+p \mathbb{Z} \in L$ for which ar $+p \mathbb{Z} \in R$.
Because $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a group, we can cancel the product from both sides to obtain

$$
\begin{aligned}
1+p \mathbb{Z}=(-1)^{n}\left(a^{(p-1) / 2}+p \mathbb{Z}\right) \Leftrightarrow 1 & \equiv(-1)^{n} a^{(p-1) / 2}(\bmod p) \\
& \equiv(-1)^{n}\left(\frac{a}{p}\right)(\bmod p)
\end{aligned}
$$

Because $\left(\frac{a}{p}\right) \in\{ \pm 1\}$, we arrive at the following conclusion.

Theorem 4 (Gauss' Lemma)

Let p be an odd prime and suppose $p \nmid a$. Let n be the number of $r+p \mathbb{Z} \in L$ for which ar $+p \mathbb{Z} \in R$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{n} .
$$

Remark. Note that we can write $n=|(a+n \mathbb{Z}) L \cap R|$.
Although Gauss' Lemma is of more theoretical than practical importance, let's give an example to illustrate it.

Example 1

Use Gauss' Lemma to compute $\left(\frac{7}{13}\right)$.

Solution. We have

$$
L=\{1+13 \mathbb{Z}, 2+13 \mathbb{Z}, 3+13 \mathbb{Z}, 4+13 \mathbb{Z}, 5+13 \mathbb{Z}, 6+13 \mathbb{Z}\}
$$

and
$(7+13 \mathbb{Z}) L=\{7+13 \mathbb{Z}, 1+13 \mathbb{Z}, 8+13 \mathbb{Z}, 2+13 \mathbb{Z}, 9+13 \mathbb{Z}, 3+13 \mathbb{Z}\}$.
Thus $n=3$ so that $\left(\frac{7}{13}\right)=(-1)^{3}=-1$, by Gauss' Lemma.

We will now apply Gauss' Lemma to prove:

Theorem 5

Let p be an odd prime. Then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$.
Remark. Since $n^{2} \equiv 1(\bmod 8)$ for all odd n, the exponent is definitely an integer.
Proof. We have

$$
\begin{aligned}
(2+p \mathbb{Z}) L \cap R & =\{2+p \mathbb{Z}, 4+p \mathbb{Z}, 6+p \mathbb{Z}, \ldots,(p-1)+p \mathbb{Z}\} \cap R \\
& =\{2 r+p \mathbb{Z} \mid 2 r>p / 2 \text { and } 1 \leq r<p / 2\} \\
& =\{2 r+p \mathbb{Z} \mid p / 4<r<p / 2\} .
\end{aligned}
$$

So the exponent n in Gauss' Lemma is the number of integers in the open interval ($p / 4, p / 2$).

The largest such integer is $\frac{p-1}{2}$.
Since $p / 4$ is not an integer, the smallest such integer is $[p / 4]+1$, where $[x]$ is the greatest integer $\leq x$.

So the number of integers in $(p / 4, p / 2)$ is

$$
n=\frac{p-1}{2}-\left(\left[\frac{p}{4}\right]+1\right)+1=\frac{p-1}{2}-\left[\frac{p}{4}\right] .
$$

We now consider p modulo 8 .
If $p \equiv 1(\bmod 8)$, then $p=1+8 k$ for some k. Hence

$$
n=\frac{p-1}{2}-\left[\frac{p}{4}\right]=4 k-\left[2 k+\frac{1}{4}\right]=4 k-2 k=2 k
$$

By Gauss' Lemma we therefore have $\left(\frac{2}{p}\right)=(-1)^{n}=(-1)^{2 k}=1$.
If $p \equiv 3(\bmod 8)$, then $p=3+8 k$ and
$n=\frac{p-1}{2}-\left[\frac{p}{4}\right]=1+4 k-\left[2 k+\frac{3}{4}\right]=1+4 k-2 k=2 k+1$,
which is odd. Hence $\left(\frac{2}{p}\right)=(-1)^{n}=-1$.
If $p \equiv 5(\bmod 8)$, then $p=5+8 k$ and
$n=\frac{p-1}{2}-\left[\frac{p}{4}\right]=2+4 k-\left[2 k+\frac{5}{4}\right]=2+4 k-(2 k+1)=2 k+1$,
which is odd. Hence $\left(\frac{2}{p}\right)=(-1)^{n}=-1$.

Finally, if $p \equiv 7(\bmod 8)$, then $p=7+8 k$ and
$n=\frac{p-1}{2}-\left[\frac{p}{4}\right]=3+4 k-\left[2 k+\frac{7}{4}\right]=3+4 k-(2 k+1)=2 k+2$,
which is even. Hence $\left(\frac{2}{p}\right)=(-1)^{n}=1$.
This proves that

$$
\begin{aligned}
\left(\frac{2}{p}\right) & = \begin{cases}1 & \text { if } p \equiv \pm 1(\bmod 8), \\
-1 & \text { if } p \equiv \pm 3(\bmod 8)\end{cases} \\
& =(-1)^{\left(p^{2}-1\right) / 8}
\end{aligned}
$$

The final equality is left as an exercise.

Example

Recall that earlier we showed

$$
\left(\frac{-72}{131}\right)=-\left(\frac{2}{131}\right)
$$

and then proceeded to compute 2^{65} modulo 131 so that we could apply Euler's criterion.

Now we can simply use Theorem 5. Since

$$
131=128+3=2^{7}+3 \equiv 3(\bmod 8)
$$

we have

$$
-\left(\frac{2}{131}\right)=-(-1)=1
$$

as computed earlier.

Remarks

The results

$$
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2} \quad \text { and } \quad\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

are sometimes referred to as the Supplementary Quadratic Reciprocity Laws.

Note that the first tells us (again) that -1 is a square modulo p iff $p \equiv 1(\bmod 4)$.

The map $\left(\frac{\cdot}{p}\right):(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ is an example of a Dirichlet character modulo n : a multiplicative map $(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$.

One More Thing...

The Legendre symbol has an interesting combinatorial interpretation.

If p is an odd prime and $p \nmid a$, then left translation by $a+p \mathbb{Z}$ yields a permutation λ_{a} of $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
Every permutation is a composition of transpositions, which simply interchange two elements.

Although the number n of transpositions needed is not unique, its parity is, so that $(-1)^{n}$ is a well-defined invariant of a permutation called its sign.
If $\sigma\left(\lambda_{a}\right)$ is the sign of λ_{a}, then one can show that in fact

$$
\sigma\left(\lambda_{a}\right)=\left(\frac{a}{p}\right) .
$$

