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Introduction

Today we will begin moving toward the Law of Quadratic

Reciprocity, which gives an explicit relationship between the
congruences x2 ≡ q (mod p) and x2 ≡ p (mod q) for distinct odd
primes p, q.

Our main tool will be the Legendre symbol, which is essentially the
indicator function of the quadratic residues of p.

We will relate the Legendre symbol to indices and Euler’s criterion,
and prove Gauss’ Lemma, which reduces the computation of the
Legendre symbol to a counting problem.

Along the way we will prove the Supplementary Quadratic

Reciprocity Laws which concern the congruences x2 ≡ −1
(mod p) and x2 ≡ 2 (mod p).
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The Legendre Symbol

Recall. Given an odd prime p and an integer a with p ∤ a, we say a

is a quadratic residue of p iff the congruence x2 ≡ a (mod p) has
a solution.

Definition

Let p be an odd prime. For a ∈ Z with p ∤ a we define the
Legendre symbol to be

(

a

p

)

=

{

1 if a is a quadratic residue of p,

− 1 otherwise.

Remark. It is customary to define

(

a

p

)

= 0 if p|a.
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Let p be an odd prime.

Notice that if a ≡ b (mod p), then the congruence x2 ≡ a

(mod p) has a solution if and only if x2 ≡ b (mod p) does.

And p|a if and only if p|b.

Thus

(

a

p

)

=

(

b

p

)

whenever a ≡ b (mod p).

It follows that we can view the Legendre symbol as a function

(

·

p

)

: Z/pZ → {0,±1},

by letting it act on representatives, i.e.

(

a + pZ

p

)

=

(

a

p

)

.
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Example

Let p = 11. Direct computation yields the table

x (mod 11) 1 2 3 4 5 6 7 8 9 10

x2 (mod 11) 1 4 9 5 3 3 5 9 4 1

Thus
(

1

11

)

=

(

3

11

)

=

(

4

11

)

=

(

5

11

)

=

(

9

11

)

= 1

and
(

2

11

)

=

(

6

11

)

=

(

7

11

)

=

(

8

11

)

=

(

10

11

)

= −1.

Daileda The Legendre Symbol



Euler’s Criterion Revisited

Let p be an odd prime. Recall Euler’s Criterion, which states that
if p ∤ a, then a is a quadratic residue if and only if

a(p−1)/2 ≡ 1 (mod p).

It turns out that Euler’s criterion also nicely classifies the quadratic
nonresidues.

Let r be a primitive root modulo p. Since

1 ≡ rp−1 ≡
(

r (p−1)/2
)2

(mod p),

r (p−1)/2 solves the congruence x2 − 1 ≡ 0 (mod p).

Clearly x = ±1 are two incongruent solutions of the same
congruence.

Daileda The Legendre Symbol



Lagrange’s theorem implies that these are the only solutions
modulo p.

Thus r (p−1)/2 ≡ ±1 (mod p).

But r has order p − 1 modulo p, so r (p−1)/2 6≡ 1 (mod p).

Therefore r (p−1)/2 ≡ −1 (mod p).

Now suppose p ∤ a. Then rk ≡ a (mod p), where k ∈ indr (a).

Hence

a(p−1)/2 ≡ (rk)(p−1)/2 ≡
(

r (p−1)/2
)k

≡ (−1)indr (a) (mod p).

Remark. Every element of indr (a) has the same parity since p − 1
is even. So we are free to choose any representative when
computing (−1)indr (a).
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Now recall that the congruence x2 ≡ a (mod p) has a solution iff
(p − 1, 2) = 2| indr (a).

Thus, a is a quadratic residue of p iff indr (a) is even iff
(−1)indr (a) = 1.

And a is a quadratic nonresidue of p iff (−1)indr (a) = −1. This
proves:

Theorem 1 (Strong Euler’s Criterion)

Let p be an odd prime and let r be a primitive root modulo p. If

p ∤ a, then

(

a

p

)

= (−1)indr (a) ≡ a(p−1)/2 (mod p).
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Remark. Note that the congruence a(p−1)/2 ≡

(

a

p

)

(mod p)

also holds when p|a, as both sides of the congruence are simply 0.

The connection between the Legendre symbol and the index
immediately yields:

Theorem 2 (Properties of the Legendre Symbol)

Let p be an odd prime and suppose p ∤ a and p ∤ b. Then:

1.

(

ab

p

)

=

(

a

p

)(

b

p

)

.

2.

(

1

p

)

= 1 and

(

−1

p

)

= (−1)(p−1)/2.

Remark. The multiplicativity relationship in 1 automatically holds
if p|a or p|b (why?).
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Proof. Let r be a primitive root modulo p.

Because the index relative to r is a multiplicative to additive
isomorphism, we have

(

ab

p

)

= (−1)indr (ab) = (−1)indr (a)+indr (b)

= (−1)indr (a)(−1)indr (b) =

(

a

p

)(

b

p

)

.

Since r (p−1)/2 ≡ −1 (mod p), we have

(

−1

p

)

= (−1)indr (−1) = (−1)(p−1)/2.

And since indr (1) = 0, we also have

(

1

p

)

= (−1)0 = 1.
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Example

Let’s evaluate

(

−72

131

)

. We have

(

−72

131

)

=

(

−2 · 62

131

)

=

(

−1

131

)(

62

131

)(

2

131

)

= (−1)(131−1)/2

(

2

131

)

= −

(

2

131

)

.

We now appeal to Euler’s criterion:

−

(

2

131

)

≡ − 2(131−1)/2 ≡ − 265 ≡ − (27)922 ≡ − (128)9 · 4 (mod 131)

≡ −(−3)9 · 4 ≡ 3 · (162)2 ≡ 3 · 312 ≡ 3 · 44 (mod 131)

≡ 132 ≡ 1 (mod 131).

Hence

(

−72

131

)

= 1.
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The next result generalizes to arbitrary nontrivial Dirichlet
characters modulo n.

Theorem 3

If p is an odd prime, then

p−1
∑

a=1

(

a

p

)

= 0. In particular, there are

exactly p−1
2 quadratic residues and p−1

2 quadratic nonresidues

modulo p.

Proof. This can be proved in a number of ways. We opt for the
most generalizable argument.

Let r be a primitive root mod p. Then

(

r

p

)

= (−1)indr (r) = −1.

Let S =

p−1
∑

a=1

(

a

p

)

.
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Since left translation by r + pZ simply permutes the elements of

the group (Z/pZ)×, and

(

a

p

)

depends only on the congruence

class of a modulo p, we find that

−S =

(

r

p

)

S =

p−1
∑

a=1

(

ra

p

)

=

p−1
∑

a=1

(

ra+ pZ

p

)

=

p−1
∑

a=1

(

(r + pZ)(a+ pZ)

p

)

=
∑

a+pZ∈(Z/pZ)×

(

(r + pZ)(a + pZ)

p

)

=
∑

a+pZ∈(Z/pZ)×

(

a + pZ

p

)

=

p−1
∑

a=1

(

a

p

)

= S .

Hence 2S = 0, which implies S = 0.
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Gauss’ Lemma

If p is an odd prime, then (Z/pZ)× is the disjoint union of

L =
{

r + pZ
∣

∣

∣
1 ≤ r <

p

2

}

and
R =

{

r + pZ
∣

∣

∣

p

2
< r ≤ p − 1

}

.

Notice that p
2 < r ≤ p − 1 iff −p

2 > −r ≥ 1− p iff p
2 > p − r ≥ 1.

Thus
−R =

{

−r + pZ
∣

∣

∣

p

2
< r ≤ p − 1

}

=
{

(p − r) + pZ
∣

∣

∣

p

2
< r ≤ p − 1

}

=
{

r + pZ
∣

∣

∣
1 ≤ r <

p

2

}

= L.
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Suppose p ∤ a. Define Ta : L → L by

Ta(r + pZ) =

{

ar + pZ if ar + pZ ∈ L,

− ar + pZ if ar + pZ ∈ R .

We claim that Ta is a bijection.

Because L is finite it suffices to prove Ta is one-to-one.

So suppose Ta(r + pZ) = Ta(s + pZ). Then ar + pZ = ±as + pZ.

Since p ∤ a, a + pZ ∈ (Z/pZ)×. Multiplication by (a + pZ)−1 then
yields

r + pZ = ±s + pZ.

Since −s+pZ ∈ R and L∩R = ∅, we must have r +pZ = s+pZ.

Thus Ta is one-to-one, as claimed, and hence a bijection.
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It follows that
∏

r+pZ∈L

(r + pZ) =
∏

r+pZ∈L

Ta(r + pZ)

= (−1)n
∏

r+pZ∈L

(ar + pZ)

= (−1)n(a + pZ)(p−1)/2
∏

r+pZ∈L

(r + pZ),

where n is the number of r + pZ ∈ L for which ar + pZ ∈ R .

Because (Z/pZ)× is a group, we can cancel the product from both
sides to obtain

1 + pZ = (−1)n
(

a(p−1)/2 + pZ
)

⇔ 1 ≡ (−1)na(p−1)/2 (mod p)

≡ (−1)n
(

a

p

)

(mod p).
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Because

(

a

p

)

∈ {±1}, we arrive at the following conclusion.

Theorem 4 (Gauss’ Lemma)

Let p be an odd prime and suppose p ∤ a. Let n be the number of

r + pZ ∈ L for which ar + pZ ∈ R. Then

(

a

p

)

= (−1)n.

Remark. Note that we can write n =
∣

∣(a + nZ)L ∩ R
∣

∣.

Although Gauss’ Lemma is of more theoretical than practical
importance, let’s give an example to illustrate it.
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Example 1

Use Gauss’ Lemma to compute

(

7

13

)

.

Solution. We have

L = {1 + 13Z, 2 + 13Z, 3 + 13Z, 4 + 13Z, 5 + 13Z, 6 + 13Z}

and

(7+13Z)L = {7+13Z, 1+13Z, 8+13Z, 2+13Z, 9+13Z, 3+13Z}.

Thus n = 3 so that

(

7

13

)

= (−1)3 = −1, by Gauss’ Lemma.
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We will now apply Gauss’ Lemma to prove:

Theorem 5

Let p be an odd prime. Then

(

2

p

)

= (−1)(p
2
−1)/8.

Remark. Since n2 ≡ 1 (mod 8) for all odd n, the exponent is
definitely an integer.

Proof. We have

(2 + pZ)L ∩ R = {2 + pZ, 4 + pZ, 6 + pZ, . . . , (p − 1) + pZ} ∩ R

= {2r + pZ | 2r > p/2 and 1 ≤ r < p/2}

= {2r + pZ | p/4 < r < p/2}.

So the exponent n in Gauss’ Lemma is the number of integers in
the open interval (p/4, p/2).
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The largest such integer is p−1
2 .

Since p/4 is not an integer, the smallest such integer is [p/4] + 1,
where [x ] is the greatest integer ≤ x .

So the number of integers in (p/4, p/2) is

n =
p − 1

2
−

([p

4

]

+ 1
)

+ 1 =
p − 1

2
−

[p

4

]

.

We now consider p modulo 8.

If p ≡ 1 (mod 8), then p = 1 + 8k for some k . Hence

n =
p − 1

2
−

[p

4

]

= 4k −

[

2k +
1

4

]

= 4k − 2k = 2k
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By Gauss’ Lemma we therefore have

(

2

p

)

= (−1)n = (−1)2k = 1.

If p ≡ 3 (mod 8), then p = 3 + 8k and

n =
p − 1

2
−

[p

4

]

= 1 + 4k −

[

2k +
3

4

]

= 1 + 4k − 2k = 2k + 1,

which is odd. Hence

(

2

p

)

= (−1)n = −1.

If p ≡ 5 (mod 8), then p = 5 + 8k and

n =
p − 1

2
−
[p

4

]

= 2+4k−

[

2k +
5

4

]

= 2+4k−(2k+1) = 2k+1,

which is odd. Hence

(

2

p

)

= (−1)n = −1.
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Finally, if p ≡ 7 (mod 8), then p = 7 + 8k and

n =
p − 1

2
−
[p

4

]

= 3+4k−

[

2k +
7

4

]

= 3+4k−(2k+1) = 2k+2,

which is even. Hence

(

2

p

)

= (−1)n = 1.

This proves that

(

2

p

)

=

{

1 if p ≡ ±1 (mod 8),

− 1 if p ≡ ±3 (mod 8)

= (−1)(p
2
−1)/8.

The final equality is left as an exercise.
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Example

Recall that earlier we showed
(

−72

131

)

= −

(

2

131

)

,

and then proceeded to compute 265 modulo 131 so that we could
apply Euler’s criterion.

Now we can simply use Theorem 5. Since

131 = 128 + 3 = 27 + 3 ≡ 3 (mod 8),

we have

−

(

2

131

)

= − (−1) = 1,

as computed earlier.
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Remarks

The results
(

−1

p

)

= (−1)(p−1)/2 and

(

2

p

)

= (−1)(p
2
−1)/8

are sometimes referred to as the Supplementary Quadratic

Reciprocity Laws.

Note that the first tells us (again) that −1 is a square modulo p iff
p ≡ 1 (mod 4).

The map

(

·

p

)

: (Z/pZ)× → {±1} is an example of a Dirichlet

character modulo n: a multiplicative map (Z/nZ)× → C×.

Daileda The Legendre Symbol



One More Thing...

The Legendre symbol has an interesting combinatorial
interpretation.

If p is an odd prime and p ∤ a, then left translation by a + pZ
yields a permutation λa of (Z/pZ)×.

Every permutation is a composition of transpositions, which simply
interchange two elements.

Although the number n of transpositions needed is not unique, its
parity is, so that (−1)n is a well-defined invariant of a permutation
called its sign.

If σ(λa) is the sign of λa, then one can show that in fact

σ(λa) =

(

a

p

)

.
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