The Law of Quadratic Reciprocity

Ryan C. Daileda

Trinity University

Number Theory

Introduction

Given odd primes $p \neq q$, the Law of Quadratic Reciprocity gives an explicit relationship between the congruences $x^{2} \equiv q(\bmod p)$ and $x^{2} \equiv p(\bmod q)$.

Euler first conjectured the Law around 1783, but Gauss was the first to give a complete proof in 1798 (when he was about 20 years old).

Gauss referred to the Law of Quadratic Reciprocity as "the fundamental theorem," and found (at least) 6 different proofs during his lifetime.

Quadratic reciprocity is a favorite of number theorists. There are more than 240 published proofs, and it has far reaching generalizations.

We shall need the following explicit reformulation of Gauss' Lemma.

Lemma 1

If p is an odd prime and $a \in \mathbb{Z}$ is odd with $p \nmid a$, then

$$
\left(\frac{a}{p}\right)=(-1)^{\sum_{k=1}^{(p-1) / 2}[k a / p]}
$$

Proof. As in Gauss' Lemma, let

$$
L=\{r+p \mathbb{Z} \mid 1 \leq r<p / 2\}
$$

and let n be the number of $a r+p \mathbb{Z} \notin L$.
Recall the bijection $T_{a}: L \rightarrow L$ given by

$$
T_{a}(r+p \mathbb{Z})= \begin{cases}a r+p \mathbb{Z} & \text { if ar }+p \mathbb{Z} \in L \\ -a r+p \mathbb{Z} & \text { otherwise }\end{cases}
$$

For $1 \leq r<p / 2$, write

$$
a r=q_{r} p+t_{r}
$$

where $1 \leq t_{r}<p$. Then

$$
T_{a}(r+p \mathbb{Z})= \begin{cases}t_{r}+p \mathbb{Z} & \text { if } t_{r}<p / 2 \\ \left(p-t_{r}\right)+p \mathbb{Z} & \text { if } t_{r}>p / 2\end{cases}
$$

Since $T_{a}: L \rightarrow L$ is a bijection,

$$
\begin{aligned}
\sum_{r=1}^{(p-1) / 2} r & =\sum_{t_{r}<p / 2} t_{r}+\sum_{t_{r}>p / 2}\left(p-t_{r}\right)=p n+\sum_{t_{r}<p / 2} t_{r}-\sum_{t_{r}>p / 2} t_{r} \\
& \equiv n+\sum_{r=1}^{(p-1) / 2} t_{r} \equiv n+\sum_{r=1}^{(p-1) / 2}\left(a r-p q_{r}\right)(\bmod 2) .
\end{aligned}
$$

But $a \equiv p \equiv 1(\bmod 2)$, so this becomes
$\sum_{r=1}^{(p-1) / 2} r \equiv n+\sum_{r=1}^{(p-1) / 2}\left(r-q_{r}\right) \equiv n+\sum_{r=1}^{(p-1) / 2} r-\sum_{r=1}^{(p-1) / 2} q_{r}(\bmod 2)$.
However, $q_{r}=\frac{a r-t_{r}}{p} \leq \frac{a r}{p}<\frac{a r+\left(p-t_{r}\right)}{p}=q_{r}+1$, so that

$$
\left[\frac{a r}{p}\right]=q_{r} .
$$

Thus

$$
n \equiv \sum_{r=1}^{(p-1) / 2} q_{r} \equiv \sum_{r=1}^{(p-1) / 2}\left[\frac{a r}{p}\right](\bmod 2)
$$

The result now follows from Gauss' Lemma.

Example 1

Use Lemma 1 to compute $\left(\frac{6}{17}\right)$.
Solution. Taking $p=17$ and $a=11$ (since 6 is even) in Lemma 1, we find that

$$
\begin{aligned}
n & \equiv \sum_{k=1}^{8}\left[\frac{11 k}{17}\right](\bmod 2) \\
& =\left[\frac{11}{17}\right]+\left[\frac{22}{17}\right]+\left[\frac{33}{17}\right]+\left[\frac{44}{17}\right]+\left[\frac{55}{17}\right]+\left[\frac{66}{17}\right]+\left[\frac{77}{17}\right]+\left[\frac{88}{17}\right] \\
& =0+1+1+2+3+3+4+5 \equiv 1(\bmod 2)
\end{aligned}
$$

Thus $\left(\frac{6}{17}\right)=\left(\frac{-11}{17}\right)=\left(\frac{-1}{17}\right)\left(\frac{11}{17}\right)=(-1)^{n}=-1$, by Lemma 1.

Theorem 1 (Law of Quadratic Reciprocity)

Let p and q be odd primes. Then

$$
\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{q}{p}\right) .
$$

Proof. Let

$$
L_{p}=\{r \in \mathbb{Z} \mid 0<r<p / 2\} \quad \text { and } \quad L_{q}=\{s \in \mathbb{Z} \mid 0<s<q / 2\},
$$

and consider the rectangle of lattice points $R_{p q}=L_{p} \times L_{q}$ in \mathbb{R}^{2}.
The line $s=(q / p) r$ passes through the diagonal of $R_{p q}$, but never hits any point in $R_{p q}$, because $(r, s) \in \mathbb{Z} \times \mathbb{Z}$ lies on $s=(q / p) r$ iff

$$
p s=q r \Rightarrow p \mid r \text { and } q \mid s \Rightarrow p \leq r \text { and } q \leq s .
$$

Thus we may divide $R_{p q}$ into the disjoint subsets
$A=\left\{(r, s) \in R_{p q} \mid s>(q / p) r\right\} \quad$ and $B=\left\{(r, s) \in R_{p q} \mid s<(q / p) r\right\}$, consisting of those points Above and those points Below the diagonal.

Suppose we count B by columns. If $0<r<p / 2$, then $(r, s) \in B$ iff $0<s<(q / p) r$.

Thus there are $\left[\frac{q r}{p}\right]$ elements of B in the r th column.

Hence

$$
|B|=\sum_{r=1}^{(p-1) / 2}\left[\frac{q r}{p}\right] \Rightarrow\left(\frac{q}{p}\right)=(-1)^{|B|}
$$

by Lemma 1. Counting A instead by rows we arrive at the symmetric relation

$$
|A|=\sum_{s=1}^{(q-1) / 2}\left[\frac{p s}{q}\right] \Rightarrow\left(\frac{p}{q}\right)=(-1)^{|A|}
$$

Since $|A|+|B|=\left|R_{p q}\right|=\frac{p-1}{2} \cdot \frac{q-1}{2}$, we find that

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{|A|+|B|}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}
$$

which is equivalent to the result.

Example 2

Use quadratic reciprocity to compute $\left(\frac{430}{541}\right)$.
Solution. We have

$$
\begin{aligned}
\left(\frac{430}{541}\right) & =\left(\frac{-111}{541}\right)=\left(\frac{-1}{541}\right)\left(\frac{3}{541}\right)\left(\frac{37}{541}\right) \\
& =(-1)^{(541-1) / 2}(-1)^{\frac{3-1}{2} \cdot \frac{541-1}{2}}\left(\frac{541}{3}\right)(-1)^{\frac{37-1}{2} \cdot \frac{541-1}{2}}\left(\frac{541}{37}\right) \\
& =\left(\frac{1}{3}\right)\left(\frac{23}{37}\right)=(-1)^{\frac{23-1}{2} \cdot \frac{37-1}{2}}\left(\frac{37}{23}\right)=\left(\frac{14}{23}\right) \\
& =\left(\frac{2}{23}\right)\left(\frac{7}{23}\right)=(-1)^{\frac{7-1}{2} \cdot \frac{23-1}{2}}\left(\frac{23}{7}\right)=-\left(\frac{2}{7}\right)=-1,
\end{aligned}
$$

by the Law of Quadratic Reciprocity and its Supplements.

Example 3

Let $p \neq 3$ be an odd prime. Show that

$$
\left(\frac{6}{p}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1, \pm 5(\bmod 24) \\ -1 & \text { if } p \equiv \pm 7, \pm 11(\bmod 24)\end{cases}
$$

Remark. Since $\varphi(24)=\varphi(3) \varphi(8)=2 \cdot 4=8$, this covers every possible case modulo 24 .
Solution. Using quadratic reciprocity we have

$$
\begin{aligned}
\left(\frac{6}{p}\right) & =\left(\frac{2}{p}\right)\left(\frac{3}{p}\right)=\left(\frac{2}{p}\right)(-1)^{\frac{3-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{3}\right) \\
& =(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)\left(\frac{p}{3}\right)
\end{aligned}
$$

If $p \equiv 1(\bmod 8)$, then $p \equiv 1(\bmod 4)$, and

$$
(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)=1 \cdot 1=1
$$

If $p \equiv 3(\bmod 8)$, then $p \equiv 3(\bmod 4)$, and

$$
(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)=(-1)(-1)=1
$$

If $p \equiv 5(\bmod 8)$, then $p \equiv 1(\bmod 4)$, and

$$
(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)=1 \cdot(-1)=-1
$$

And if $p \equiv 7(\bmod 8)$, then $p \equiv 3(\bmod 4)$, and

$$
(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)=(-1) \cdot 1=-1
$$

If $p \equiv 1(\bmod 3)$, then $\left(\frac{p}{3}\right)=1$ and hence

$$
\begin{aligned}
\left(\frac{6}{p}\right) & =(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)\left(\frac{p}{3}\right) \\
& =(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv 1,3(\bmod 8) \\
-1, & \text { if } p \equiv 5,7(\bmod 8) .\end{cases}
\end{aligned}
$$

On the other hand, if $p \equiv 2(\bmod 3)$, then

$$
\begin{aligned}
\left(\frac{6}{p}\right) & =(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)\left(\frac{p}{3}\right) \\
& =-(-1)^{(p-1) / 2}\left(\frac{2}{p}\right)= \begin{cases}-1 & \text { if } p \equiv 1,3(\bmod 8) \\
1, & \text { if } p \equiv 5,7(\bmod 8)\end{cases}
\end{aligned}
$$

Thus $\left(\frac{6}{p}\right)=1$ if and only if $p \equiv 1(\bmod 3)$ and $p \equiv 1,3(\bmod 8)$ or $p \equiv 2(\bmod 3)$ and $p \equiv 5,7(\bmod 8)$.

This gives us four pairs of congruences modulo 3 and 8 , which we can solve via the CRT.

We find these are equivalent to

$$
p \equiv 1,5,19,23 \equiv \pm 1, \pm 5(\bmod 24)
$$

The only remaining options are

$$
p \equiv 7,11,13,17 \equiv \pm 7, \pm 11(\bmod 24)
$$

and we must therefore have $\left(\frac{6}{p}\right)=-1$ in these cases.

Remark

Given an odd prime p, let $p^{*}=(-1)^{(p-1) / 2} p= \pm p$.
Then the Law of Quadratic Reciprocity and Euler's criterion give

$$
\begin{aligned}
\left(\frac{p}{q}\right) & =(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{q}{p}\right) \\
& =\left((-1)^{(q-1) / 2}\right)^{(p-1) / 2}\left(\frac{q}{p}\right) \\
& =\left(\frac{(-1)^{(q-1) / 2}}{p}\right)\left(\frac{q}{p}\right)=\left(\frac{q^{*}}{p}\right) .
\end{aligned}
$$

This is a common restatement of the Law of Quadratic Reciprocity.

