
The Law of Quadratic Reciprocity

Ryan C. Daileda

Trinity University

Number Theory

Daileda Quadratic Reciprocity



Introduction

Given odd primes p 6= q, the Law of Quadratic Reciprocity gives an
explicit relationship between the congruences x2 ≡ q (mod p) and
x2 ≡ p (mod q).

Euler first conjectured the Law around 1783, but Gauss was the
first to give a complete proof in 1798 (when he was about 20 years
old).

Gauss referred to the Law of Quadratic Reciprocity as “the
fundamental theorem,” and found (at least) 6 different proofs
during his lifetime.

Quadratic reciprocity is a favorite of number theorists. There are
more than 240 published proofs, and it has far reaching
generalizations.
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We shall need the following explicit reformulation of Gauss’
Lemma.

Lemma 1

If p is an odd prime and a ∈ Z is odd with p ∤ a, then

(

a

p

)

= (−1)
∑(p−1)/2

k=1 [ka/p].

Proof. As in Gauss’ Lemma, let

L = {r + pZ | 1 ≤ r < p/2}

and let n be the number of ar + pZ 6∈ L.
Recall the bijection Ta : L → L given by

Ta(r + pZ) =

{

ar + pZ if ar + pZ ∈ L,

−ar + pZ otherwise.
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For 1 ≤ r < p/2, write

ar = qrp + tr ,

where 1 ≤ tr < p. Then

Ta(r + pZ) =

{

tr + pZ if tr < p/2,

(p − tr ) + pZ if tr > p/2.

Since Ta : L → L is a bijection,

(p−1)/2
∑

r=1

r =
∑

tr<p/2

tr +
∑

tr>p/2

(p − tr ) = pn +
∑

tr<p/2

tr −
∑

tr>p/2

tr

≡ n +

(p−1)/2
∑

r=1

tr ≡ n +

(p−1)/2
∑

r=1

(ar − pqr ) (mod 2).
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But a ≡ p ≡ 1 (mod 2), so this becomes

(p−1)/2
∑

r=1

r ≡ n+

(p−1)/2
∑

r=1

(r − qr ) ≡ n+

(p−1)/2
∑

r=1

r −

(p−1)/2
∑

r=1

qr (mod 2).

However, qr =
ar−tr
p

≤ ar
p
< ar+(p−tr )

p
= qr + 1, so that

[

ar

p

]

= qr .

Thus

n ≡

(p−1)/2
∑

r=1

qr ≡

(p−1)/2
∑

r=1

[

ar

p

]

(mod 2).

The result now follows from Gauss’ Lemma.
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Example 1

Use Lemma 1 to compute

(

6

17

)

.

Solution. Taking p = 17 and a = 11 (since 6 is even) in Lemma 1,
we find that

n ≡
8
∑

k=1

[

11k

17

]

(mod 2)

=

[

11

17

]

+

[

22

17

]

+

[

33

17

]

+

[

44

17

]

+

[

55

17

]

+

[

66

17

]

+

[

77

17

]

+

[

88

17

]

= 0 + 1 + 1 + 2 + 3 + 3 + 4 + 5 ≡ 1 (mod 2).

Thus

(

6

17

)

=

(

−11

17

)

=

(

−1

17

)(

11

17

)

= (−1)n = − 1, by

Lemma 1.
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Theorem 1 (Law of Quadratic Reciprocity)

Let p and q be odd primes. Then

(

p

q

)

= (−1)
p−1
2

· q−1
2

(

q

p

)

.

Proof. Let

Lp = {r ∈ Z | 0 < r < p/2} and Lq = {s ∈ Z | 0 < s < q/2},

and consider the rectangle of lattice points Rpq = Lp × Lq in R2.

The line s = (q/p)r passes through the diagonal of Rpq, but never
hits any point in Rpq, because (r , s) ∈ Z× Z lies on s = (q/p)r iff

ps = qr ⇒ p|r and q|s ⇒ p ≤ r and q ≤ s.
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Thus we may divide Rpq into the disjoint subsets

A = {(r , s) ∈ Rpq | s > (q/p)r} and B = {(r , s) ∈ Rpq | s < (q/p)r},

consisting of those points Above and those points Below the
diagonal.

Suppose we count B by columns. If 0 < r < p/2, then (r , s) ∈ B

iff 0 < s < (q/p)r .

Thus there are
[

qr
p

]

elements of B in the r th column.
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Hence

|B | =

(p−1)/2
∑

r=1

[

qr

p

]

⇒

(

q

p

)

= (−1)|B|,

by Lemma 1. Counting A instead by rows we arrive at the
symmetric relation

|A| =

(q−1)/2
∑

s=1

[

ps

q

]

⇒

(

p

q

)

= (−1)|A|.

Since |A|+ |B | = |Rpq| =
p−1
2 · q−1

2 , we find that

(

p

q

)(

q

p

)

= (−1)|A|+|B| = (−1)
p−1
2

· q−1
2 ,

which is equivalent to the result.
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Example 2

Use quadratic reciprocity to compute

(

430

541

)

.

Solution. We have
(

430

541

)

=

(

−111

541

)

=

(

−1

541

)(

3

541

)(

37

541

)

= (−1)(541−1)/2(−1)
3−1
2

· 541−1
2

(

541

3

)

(−1)
37−1

2
· 541−1

2

(

541

37

)

=

(

1

3

)(

23

37

)

= (−1)
23−1

2
· 37−1

2

(

37

23

)

=

(

14

23

)

=

(

2

23

)(

7

23

)

= (−1)
7−1
2

· 23−1
2

(

23

7

)

= −

(

2

7

)

= − 1,

by the Law of Quadratic Reciprocity and its Supplements.
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Example 3

Let p 6= 3 be an odd prime. Show that

(

6

p

)

=

{

1 if p ≡ ±1,±5 (mod 24),

− 1 if p ≡ ±7,±11 (mod 24).

Remark. Since ϕ(24) = ϕ(3)ϕ(8) = 2 · 4 = 8, this covers every
possible case modulo 24.

Solution. Using quadratic reciprocity we have

(

6

p

)

=

(

2

p

)(

3

p

)

=

(

2

p

)

(−1)
3−1
2

· p−1
2

(p

3

)

= (−1)(p−1)/2

(

2

p

)

(p

3

)

.
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If p ≡ 1 (mod 8), then p ≡ 1 (mod 4), and

(−1)(p−1)/2

(

2

p

)

= 1 · 1 = 1.

If p ≡ 3 (mod 8), then p ≡ 3 (mod 4), and

(−1)(p−1)/2

(

2

p

)

= (−1)(−1) = 1.

If p ≡ 5 (mod 8), then p ≡ 1 (mod 4), and

(−1)(p−1)/2

(

2

p

)

= 1 · (−1) = − 1.

And if p ≡ 7 (mod 8), then p ≡ 3 (mod 4), and

(−1)(p−1)/2

(

2

p

)

= (−1) · 1 = − 1.
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If p ≡ 1 (mod 3), then
(p

3

)

= 1 and hence

(

6

p

)

= (−1)(p−1)/2

(

2

p

)

(p

3

)

= (−1)(p−1)/2

(

2

p

)

=

{

1 if p ≡ 1, 3 (mod 8)

− 1, if p ≡ 5, 7 (mod 8).

On the other hand, if p ≡ 2 (mod 3), then

(

6

p

)

= (−1)(p−1)/2

(

2

p

)

(p

3

)

= −(−1)(p−1)/2

(

2

p

)

=

{

−1 if p ≡ 1, 3 (mod 8)

1, if p ≡ 5, 7 (mod 8).
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Thus

(

6

p

)

= 1 if and only if p ≡ 1 (mod 3) and p ≡ 1, 3 (mod 8)

or p ≡ 2 (mod 3) and p ≡ 5, 7 (mod 8).

This gives us four pairs of congruences modulo 3 and 8, which we
can solve via the CRT.

We find these are equivalent to

p ≡ 1, 5, 19, 23 ≡ ±1,±5 (mod 24).

The only remaining options are

p ≡ 7, 11, 13, 17 ≡ ±7,±11 (mod 24),

and we must therefore have

(

6

p

)

= −1 in these cases.
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Remark

Given an odd prime p, let p∗ = (−1)(p−1)/2p = ± p.

Then the Law of Quadratic Reciprocity and Euler’s criterion give

(

p

q

)

= (−1)
p−1
2

· q−1
2

(

q

p

)

=
(

(−1)(q−1)/2
)(p−1)/2

(

q

p

)

=

(

(−1)(q−1)/2

p

)

(

q

p

)

=

(

q∗

p

)

.

This is a common restatement of the Law of Quadratic Reciprocity.
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