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Introduction

Via the CRT, the quadratic congruence X 2 ≡ a (mod n) can be
reduced to a system of congruences of the form X 2 ≡ a (mod pe),
where p is prime.

For odd primes, one can show that solutions of X 2 ≡ a (mod p),
whose existence can be ascertained by evaluating the Legendre

symbol

(
a

p

)
, uniquely “lift” to solutions modulo pn for n ≥ 2.

The techniques involved apply equally as well to the more general
congruence f (X ) ≡ 0 (mod pn), where f (X ) is a polynomial with
integer coefficients, so this is where we choose to begin.
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Polynomial Congruences and the CRT

Let Z[X ] denote the ring of all polynomials in X with integer
coefficients.

For f (X ) ∈ Z[X ] and n ∈ N we will be interested in the polynomial
congruence

f (X ) ≡ 0 (mod n). (1)

If n = pe11 pe
2

2 · · · perr is the canonical form of n, the CRT implies
that (1) is equivalent to the system

f (X ) ≡ 0 (mod p
ei
i ), 1 ≤ i ≤ r .

Daileda Polynomial Congruences



Specifically, if Ri denotes the set of solutions to f (X ) ≡ 0
(mod p

ei
i ), then for each choice of ri ∈ Ri the solution to the

system
X ≡ ri (mod p

ei
i ), 1 ≤ i ≤ r ,

provides a solution to f (X ) ≡ 0 (mod n), and every solution to the
latter is obtained in this way.

So it suffices to assume that n = pe for some prime p and e ∈ N.

Write f (X ) = adX
d + ad−1X

d−1 + · · ·+ a1X + a0 with ai ∈ Z and
d ≥ 1.

For convenience we assume p ∤ ad .
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Derivatives of Polynomials

Definition

For f (X ) = adX
d + ad−1X

d−1 + · · ·+ a0 ∈ Z[X ] we define its
formal derivative to be

Df (X ) = dadX
d−1 + (d − 1)ad−1X

d−2 + · · · + a1.

Remarks.

The derivative Df is purely algebraic. We do not take limits
to obtain it (as in Calculus).

If a ∈ Z, then Da = D(aX 0) = 0.

One can show that the formal derivative is linear and obeys
the product rule. That is, for f , g ∈ Z[X ] and a, b ∈ Z one has

D(af + bg) = aDf + bDg and D(fg) = fDg + gDf .
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Let a ∈ Z. Recall that for any f (X ) ∈ Z[X ] there exists a unique
f̃ (X ) ∈ Z[X ] so that

f (X ) = (X − a)f̃ (X ) + f (a). (2)

Operating at the level of rational functions for a moment, this says
that

f̃ (X ) =
f (X )− f (a)

X − a
,

which suggests that f̃ (a) = Df (a).

This is indeed the case. If we differentiate (2) and apply the
product rule, we have

Df (X ) = f̃ (X ) + (X − a)Df̃ (X ) ⇒ Df (a) = f̃ (a).
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We are now in a position to prove our main result on polynomial
congruences with prime power moduli.

Theorem 1 (Hensel’s Lemma)

Let p be a prime and let f (X ) ∈ Z[X ]. If there exists an r1 ∈ Z so

that f (r1) ≡ 0 (mod p) and Df (r1) 6≡ 0 (mod p), then there exists

a sequence {rn}n∈N of integers satisfying:

1. rn+1 ≡ rn (mod pn) for all n ≥ 1.

2. f (rn) ≡ 0 (mod pn) for all n ≥ 1.

Moreover, rn is unique modulo pn for n ≥ 2.

Proof. To prove the existence of rn we induct on n, the case n = 1
being provided by our hypotheses.
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So suppose n ≥ 1 and we have found rk for 1 ≤ k ≤ n satisfying
conditions 1 and 2.

Write f (X ) = (X − rn)f̃ (X ) + f (rn) with f̃ (X ) ∈ Z[X ].

Since f (rn) ≡ 0 (mod pn), we can write f (rn) = apn for some
a ∈ Z.

For b ∈ Z, consider r = rn + bpn. Clearly r ≡ rn mod pn, and we
have

f (r) = bpn f̃ (r) + f (rn) = (bf̃ (r) + a)pn.

Since r ≡ rn ≡ rn−1 ≡ rn−1 ≡ · · · ≡ r1 (mod p), we also have

f̃ (r) ≡ f̃ (rn) ≡ Df (rn) ≡ Df (r1) 6≡ 0 (mod p).
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Because Df (r1) 6≡ 0 (mod p), there is a unique bn+1 (modulo p)
solving the linear congruence

bn+1Df (r1) ≡ −a (mod p).

Taking rn+1 = r = rn + bn+1p
n, we then have

bn+1 f̃ (rn+1) ≡ bn+1 f̃ (rn) ≡ bn+1Df (r1) ≡ −a (mod p).

Thus

f (rn+1) = (bn+1 f̃ (rn+1) + a)︸ ︷︷ ︸
div. by p

pn ≡ 0 (mod pn+1).

This completes the induction and proves the existence of the
sequence {rn}.
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To prove uniqueness, suppose that {sn} is another sequence
satisfying 1 and 2.

We will inductively prove that sn ≡ rn (mod pn) for all n ≥ 1. We
have r1 ≡ s1 (mod p) by definition.

Now assume that rn ≡ sn (mod pn) for some n ≥ 1 and write
f (X ) = (X − rn+1)f̃ (X ) + f (rn+1) with f̃ (X ) ∈ Z[X ].

We then have

0 ≡ f (sn+1) ≡ (sn+1 − rn+1)f̃ (sn+1) + f (rn+1) (mod pn+1)

≡ (sn+1 − rn+1)f̃ (sn+1) (mod pn+1).

That is, pn+1|(sn+1 − rn+1)f̃ (sn+1).
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However, working modulo p we have

f̃ (sn+1) ≡ f̃ (sn) ≡ f̃ (rn) ≡ f̃ (rn+1) ≡ Df (rn+1) ≡ Df (r1) (mod p).

Since Df (r1) 6≡ 0 (mod p) and p is prime, this implies that
(f̃ (sn+1), p

n+1) = 1.

Therefore, by Euclid’s lemma we have

pn+1|(sn+1 − rn+1)f̃ (sn+1) ⇒ pn+1|sn+1 − rn+1

⇔ sn+1 ≡ rn+1 (mod pn+1).

This completes the induction and proves the uniqueness of the
sequence {rn}.
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Remark

The proof of Hensel’s lemma recursively constructs the solution
{rn} of solutions to f (X ) ≡ 0 (mod pn) starting from f (r1) ≡ 0
(mod p).

If we dissect the proof a bit, we find that rn+1 = rn + bn+1p
n,

where bn+1Df (rn) ≡ bn+1Df (r1) ≡ −a (mod p).

Since p ∤ Df (rn), we can write this final congruence as

bn+1 ≡
−a

Df (rn)
(mod p) ⇔ bn+1p

n ≡ −apn

Df (rn)
(mod pn+1),

where the inversion is meant to take place in (Z/pn+1Z)×.
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Since f (rn) = apn, this tells us that

rn+1 ≡ rn −
f (rn)

Df (rn)
(mod pn+1).

Compare this to Newton’s Method for finding real solutions to
f (X ) = 0, which starts with an initial approximation x1, then
recursively forms

xn+1 = xn −
f (xn)

f ′(xn)
.

One can show that the sequence of integers {rn} successively
approximates a true solution to f (X ) = 0 in the ring Zp of p-adic
integers.
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Example 1

Solve the polynomial congruence X 3 − 2 ≡ 0 (mod 5n) for
1 ≤ n ≤ 6.

Solution. When n = 1, one easily checks that r1 ≡ 3 (mod 5) is
the only solution.

Hensel’s lemma implies that for each n ≥ 1 there is a unique
solution rn modulo 5n, and it is given recursively by

rn+1 ≡ rn −
r3n − 2

3r2n
(mod 5n+1).
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We therefore have

r2 ≡ 3− 33 − 2

3 · 32 ≡ 3− 0

2
≡ 3 (mod 52),

r3 ≡ 3− 33 − 2

3 · 32 ≡ 3− 25

27
≡ 53 (mod 53),

r4 ≡ 53− 533 − 2

3 · 532 ≡ 53− 125

302
≡ 303 (mod 54),

r5 = 303 − 3033 − 2

3 · 3032 ≡ 303 − 2500

427
≡ 2178 (mod 55),

r6 = 2178 − 21783 − 2

3 · 21782 ≡ 5303 (mod 56).

When expressed in base 5 these yield the 5-adic root

3 + 0 · 5 + 2 · 52 + 2 · 53 + 3 · 54 + 1 · 55 + · · ·

of X 3 − 2.
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Quadratic Congruences

Let p be an odd prime and consider the congruence

f (X ) = aX 2 + bX + c ≡ 0 (mod p)

with p ∤ a and discriminant ∆ = b2 − 4ac .

We have shown that this has two distinct solutions modulo p if

and only if

(
∆

p

)
= 1, both of which are given by the quadratic

formula:

r ≡ −b ±
√
∆

2a
≡ −b

2a
±

√
∆

2a
6≡ −b

2a
(mod p),

since ∆ 6≡ 0 (mod p).
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This implies that Df (r) ≡ 2ar + b 6≡ 0 (mod p).

Hensel’s lemma therefore implies that the congruence

aX 2 + bX + c ≡ 0 (mod pn)

has exactly two solutions modulo pn for every n ≥ 1, given by
Newton’s Method.

Theorem 2

Let p be an odd prime and f (X ) = aX 2 + bX + c. If p ∤ a and(
∆

p

)
= 1, then the congruence f (X ) ≡ 0 (mod pn) has exactly

two solutions for each n ≥ 1. If r1 ≡ −b±
√
∆

2a
(mod p), these are

given recursively by

rn+1 ≡ rn −
f (rn)

f ′(rn)
(mod pn+1).

Daileda Polynomial Congruences



Example 2

Solve the polynomial congruence X 2 ≡ 17 (mod 19n) for n ≥ 1.

Solution. The given congruence is equivalent to X 2 − 17 ≡ 0
(mod 19), which has discriminant

∆ = 4 · 17.

By the law(s) of quadratic reciprocity we have

(
∆

19

)
=

(
17

19

)
=

(
19

17

)
=

(
2

17

)
= 1,

so there are two incongruent solutions modulo 19 by Theorem 2.

A quick computation shows that (±6)2 ≡ 36 ≡ −2 ≡ 17
(mod 19), so that r1 ≡ ±6 (mod 19).
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The general solutions are given by

rn+1 ≡ rn −
r2n − 17

2rn
≡ 1

2

(
rn +

17

rn

)
(mod 19n+1).

With r1 = 6 we obtain

r2 ≡
1

2

(
6 +

17

6

)
≡ 215 (mod 192),

r3 ≡
1

2

(
215 +

17

215

)
≡ 937 (mod 193),

r4 ≡
1

2

(
937 +

17

937

)
≡ 14655 (mod 194),

or 19-adically

r = 6 + 11 · 19 + 2 · 192 + 2 · 193 + 2 · 194 + 8 · 195 + · · ·
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Since the other solution modulo 19 is simply r ′1 = −r1, we are
assured that the remaining solutions are given by

r ′2 ≡ −215 ≡ 146 (mod 192),

r ′3 ≡ −937 ≡ 5922 (mod 193),

r ′4 ≡ −14655 ≡ 111566 (mod 194),

or 19-adically:

r ′ = 13 + 7 · 19 + 16 · 192 + 16 · 193 + 16 · 194 + 10 · 195 + · · ·

Remark. Because
√
17 is irrational, one can show that the 19-adic

“digits” of
√
17 are not eventually periodic.
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