Polynomial Congruences and Hensel's Lemma

Ryan C. Daileda

Trinity University

Number Theory

Introduction

Via the CRT, the quadratic congruence $X^{2} \equiv a(\bmod n)$ can be reduced to a system of congruences of the form $X^{2} \equiv a\left(\bmod p^{e}\right)$, where p is prime.

For odd primes, one can show that solutions of $X^{2} \equiv a(\bmod p)$, whose existence can be ascertained by evaluating the Legendre symbol $\left(\frac{a}{p}\right)$, uniquely "lift" to solutions modulo p^{n} for $n \geq 2$.

The techniques involved apply equally as well to the more general congruence $f(X) \equiv 0\left(\bmod p^{n}\right)$, where $f(X)$ is a polynomial with integer coefficients, so this is where we choose to begin.

Polynomial Congruences and the CRT

Let $\mathbb{Z}[X]$ denote the ring of all polynomials in X with integer coefficients.

For $f(X) \in \mathbb{Z}[X]$ and $n \in \mathbb{N}$ we will be interested in the polynomial congruence

$$
\begin{equation*}
f(X) \equiv 0(\bmod n) \tag{1}
\end{equation*}
$$

If $n=p_{1}^{e_{1}} p_{2}^{e^{2}} \cdots p_{r}^{e_{r}}$ is the canonical form of n, the CRT implies that (1) is equivalent to the system

$$
f(X) \equiv 0\left(\bmod p_{i}^{e_{i}}\right), \quad 1 \leq i \leq r
$$

Specifically, if R_{i} denotes the set of solutions to $f(X) \equiv 0$ $\left(\bmod p_{i}^{e_{i}}\right)$, then for each choice of $r_{i} \in R_{i}$ the solution to the system

$$
X \equiv r_{i}\left(\bmod p_{i}^{e_{i}}\right), \quad 1 \leq i \leq r
$$

provides a solution to $f(X) \equiv 0(\bmod n)$, and every solution to the latter is obtained in this way.

So it suffices to assume that $n=p^{e}$ for some prime p and $e \in \mathbb{N}$.

Write $f(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0}$ with $a_{i} \in \mathbb{Z}$ and $d \geq 1$.

For convenience we assume $p \nmid a_{d}$.

Derivatives of Polynomials

Definition

For $f(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in \mathbb{Z}[X]$ we define its formal derivative to be

$$
D f(X)=d a_{d} X^{d-1}+(d-1) a_{d-1} X^{d-2}+\cdots+a_{1}
$$

Remarks.

- The derivative Df is purely algebraic. We do not take limits to obtain it (as in Calculus).
- If $a \in \mathbb{Z}$, then $D a=D\left(a X^{0}\right)=0$.
- One can show that the formal derivative is linear and obeys the product rule. That is, for $f, g \in \mathbb{Z}[X]$ and $a, b \in \mathbb{Z}$ one has

$$
D(a f+b g)=a D f+b D g \quad \text { and } \quad D(f g)=f D g+g D f
$$

Let $a \in \mathbb{Z}$. Recall that for any $f(X) \in \mathbb{Z}[X]$ there exists a unique $\widetilde{f}(X) \in \mathbb{Z}[X]$ so that

$$
\begin{equation*}
f(X)=(X-a) \widetilde{f}(X)+f(a) \tag{2}
\end{equation*}
$$

Operating at the level of rational functions for a moment, this says that

$$
\widetilde{f}(X)=\frac{f(X)-f(a)}{X-a}
$$

which suggests that $\widetilde{f}(a)=\operatorname{Df}(a)$.
This is indeed the case. If we differentiate (2) and apply the product rule, we have

$$
D f(X)=\widetilde{f}(X)+(X-a) D \tilde{f}(X) \Rightarrow D f(a)=\widetilde{f}(a)
$$

We are now in a position to prove our main result on polynomial congruences with prime power moduli.

Theorem 1 (Hensel's Lemma)

Let p be a prime and let $f(X) \in \mathbb{Z}[X]$. If there exists an $r_{1} \in \mathbb{Z}$ so that $f\left(r_{1}\right) \equiv 0(\bmod p)$ and $D f\left(r_{1}\right) \not \equiv 0(\bmod p)$, then there exists a sequence $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ of integers satisfying:

1. $r_{n+1} \equiv r_{n}\left(\bmod p^{n}\right)$ for all $n \geq 1$.
2. $f\left(r_{n}\right) \equiv 0\left(\bmod p^{n}\right)$ for all $n \geq 1$.

Moreover, r_{n} is unique modulo p^{n} for $n \geq 2$.

Proof. To prove the existence of r_{n} we induct on n, the case $n=1$ being provided by our hypotheses.

So suppose $n \geq 1$ and we have found r_{k} for $1 \leq k \leq n$ satisfying conditions 1 and 2.

Write $f(X)=\left(X-r_{n}\right) \widetilde{f}(X)+f\left(r_{n}\right)$ with $\widetilde{f}(X) \in \mathbb{Z}[X]$.
Since $f\left(r_{n}\right) \equiv 0\left(\bmod p^{n}\right)$, we can write $f\left(r_{n}\right)=a p^{n}$ for some $a \in \mathbb{Z}$.

For $b \in \mathbb{Z}$, consider $r=r_{n}+b p^{n}$. Clearly $r \equiv r_{n} \bmod p^{n}$, and we have

$$
f(r)=b p^{n} \widetilde{f}(r)+f\left(r_{n}\right)=(b \widetilde{f}(r)+a) p^{n}
$$

Since $r \equiv r_{n} \equiv r_{n-1} \equiv r_{n-1} \equiv \cdots \equiv r_{1}(\bmod p)$, we also have

$$
\widetilde{f}(r) \equiv \widetilde{f}\left(r_{n}\right) \equiv D f\left(r_{n}\right) \equiv D f\left(r_{1}\right) \not \equiv 0(\bmod p)
$$

Because $\operatorname{Df}\left(r_{1}\right) \not \equiv 0(\bmod p)$, there is a unique $b_{n+1}(\operatorname{modulo} p)$ solving the linear congruence

$$
b_{n+1} D f\left(r_{1}\right) \equiv-a(\bmod p)
$$

Taking $r_{n+1}=r=r_{n}+b_{n+1} p^{n}$, we then have

$$
b_{n+1} \widetilde{f}\left(r_{n+1}\right) \equiv b_{n+1} \widetilde{f}\left(r_{n}\right) \equiv b_{n+1} D f\left(r_{1}\right) \equiv-a(\bmod p)
$$

Thus

$$
f\left(r_{n+1}\right)=\underbrace{\left(b_{n+1} \widetilde{f}\left(r_{n+1}\right)+a\right)}_{\text {div. by } p} p^{n} \equiv 0 \quad\left(\bmod p^{n+1}\right)
$$

This completes the induction and proves the existence of the sequence $\left\{r_{n}\right\}$.

To prove uniqueness, suppose that $\left\{s_{n}\right\}$ is another sequence satisfying $\mathbf{1}$ and 2.

We will inductively prove that $s_{n} \equiv r_{n}\left(\bmod p^{n}\right)$ for all $n \geq 1$. We have $r_{1} \equiv s_{1}(\bmod p)$ by definition.

Now assume that $r_{n} \equiv s_{n}\left(\bmod p^{n}\right)$ for some $n \geq 1$ and write $f(X)=\left(X-r_{n+1}\right) \widetilde{f}(X)+f\left(r_{n+1}\right)$ with $\widetilde{f}(X) \in \mathbb{Z}[X]$.

We then have

$$
\begin{aligned}
0 \equiv f\left(s_{n+1}\right) & \equiv\left(s_{n+1}-r_{n+1}\right) \widetilde{f}\left(s_{n+1}\right)+f\left(r_{n+1}\right)\left(\bmod p^{n+1}\right) \\
& \equiv\left(s_{n+1}-r_{n+1}\right) \widetilde{f}\left(s_{n+1}\right)\left(\bmod p^{n+1}\right)
\end{aligned}
$$

That is, $p^{n+1} \mid\left(s_{n+1}-r_{n+1}\right) \widetilde{f}\left(s_{n+1}\right)$.

However, working modulo p we have

$$
\widetilde{f}\left(s_{n+1}\right) \equiv \widetilde{f}\left(s_{n}\right) \equiv \widetilde{f}\left(r_{n}\right) \equiv \widetilde{f}\left(r_{n+1}\right) \equiv D f\left(r_{n+1}\right) \equiv D f\left(r_{1}\right)(\bmod p)
$$

Since $\operatorname{Df}\left(r_{1}\right) \not \equiv 0(\bmod p)$ and p is prime, this implies that $\left(\widetilde{f}\left(s_{n+1}\right), p^{n+1}\right)=1$.

Therefore, by Euclid's lemma we have

$$
\begin{aligned}
p^{n+1} \mid\left(s_{n+1}-r_{n+1}\right) \tilde{f}\left(s_{n+1}\right) & \Rightarrow p^{n+1} \mid s_{n+1}-r_{n+1} \\
& \Leftrightarrow s_{n+1} \equiv r_{n+1}\left(\bmod p^{n+1}\right) .
\end{aligned}
$$

This completes the induction and proves the uniqueness of the sequence $\left\{r_{n}\right\}$.

Remark

The proof of Hensel's lemma recursively constructs the solution $\left\{r_{n}\right\}$ of solutions to $f(X) \equiv 0\left(\bmod p^{n}\right)$ starting from $f\left(r_{1}\right) \equiv 0$ $(\bmod p)$.

If we dissect the proof a bit, we find that $r_{n+1}=r_{n}+b_{n+1} p^{n}$, where $b_{n+1} D f\left(r_{n}\right) \equiv b_{n+1} D f\left(r_{1}\right) \equiv-a(\bmod p)$.

Since $p \nmid D f\left(r_{n}\right)$, we can write this final congruence as

$$
b_{n+1} \equiv \frac{-a}{D f\left(r_{n}\right)} \quad(\bmod p) \Leftrightarrow b_{n+1} p^{n} \equiv \frac{-a p^{n}}{D f\left(r_{n}\right)} \quad\left(\bmod p^{n+1}\right)
$$

where the inversion is meant to take place in $\left(\mathbb{Z} / p^{n+1} \mathbb{Z}\right)^{\times}$.

Since $f\left(r_{n}\right)=a p^{n}$, this tells us that

$$
r_{n+1} \equiv r_{n}-\frac{f\left(r_{n}\right)}{D f\left(r_{n}\right)}\left(\bmod p^{n+1}\right)
$$

Compare this to Newton's Method for finding real solutions to $f(X)=0$, which starts with an initial approximation x_{1}, then recursively forms

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

One can show that the sequence of integers $\left\{r_{n}\right\}$ successively approximates a true solution to $f(X)=0$ in the ring \mathbb{Z}_{p} of p-adic integers.

Example 1

Solve the polynomial congruence $X^{3}-2 \equiv 0\left(\bmod 5^{n}\right)$ for $1 \leq n \leq 6$.

Solution. When $n=1$, one easily checks that $r_{1} \equiv 3(\bmod 5)$ is the only solution.

Hensel's lemma implies that for each $n \geq 1$ there is a unique solution r_{n} modulo 5^{n}, and it is given recursively by

$$
r_{n+1} \equiv r_{n}-\frac{r_{n}^{3}-2}{3 r_{n}^{2}} \quad\left(\bmod 5^{n+1}\right)
$$

We therefore have

$$
\begin{aligned}
& r_{2} \equiv 3-\frac{3^{3}-2}{3 \cdot 3^{2}} \equiv 3-\frac{0}{2} \equiv 3\left(\bmod 5^{2}\right) \\
& r_{3} \equiv 3-\frac{3^{3}-2}{3 \cdot 3^{2}} \equiv 3-\frac{25}{27} \equiv 53\left(\bmod 5^{3}\right) \\
& r_{4} \equiv 53-\frac{53^{3}-2}{3 \cdot 53^{2}} \equiv 53-\frac{125}{302} \equiv 303\left(\bmod 5^{4}\right) \\
& r_{5}=303-\frac{303^{3}-2}{3 \cdot 303^{2}} \equiv 303-\frac{2500}{427} \equiv 2178\left(\bmod 5^{5}\right) \\
& r_{6}=2178-\frac{2178^{3}-2}{3 \cdot 2178^{2}} \equiv 5303\left(\bmod 5^{6}\right)
\end{aligned}
$$

When expressed in base 5 these yield the 5 -adic root

$$
3+0 \cdot 5+2 \cdot 5^{2}+2 \cdot 5^{3}+3 \cdot 5^{4}+1 \cdot 5^{5}+\cdots
$$

$$
\text { of } X^{3}-2
$$

Quadratic Congruences

Let p be an odd prime and consider the congruence

$$
f(X)=a X^{2}+b X+c \equiv 0(\bmod p)
$$

with $p \nmid a$ and discriminant $\Delta=b^{2}-4 a c$.
We have shown that this has two distinct solutions modulo p if and only if $\left(\frac{\Delta}{p}\right)=1$, both of which are given by the quadratic formula:

$$
r \equiv \frac{-b \pm \sqrt{\Delta}}{2 a} \equiv \frac{-b}{2 a} \pm \frac{\sqrt{\Delta}}{2 a} \not \equiv \frac{-b}{2 a} \quad(\bmod p)
$$

since $\Delta \not \equiv 0(\bmod p)$.

This implies that $D f(r) \equiv 2 a r+b \not \equiv 0(\bmod p)$.
Hensel's lemma therefore implies that the congruence

$$
a X^{2}+b X+c \equiv 0 \quad\left(\bmod p^{n}\right)
$$

has exactly two solutions modulo p^{n} for every $n \geq 1$, given by Newton's Method.

Theorem 2

Let p be an odd prime and $f(X)=a X^{2}+b X+c$. If $p \nmid a$ and $\left(\frac{\Delta}{p}\right)=1$, then the congruence $f(X) \equiv 0\left(\bmod p^{n}\right)$ has exactly two solutions for each $n \geq 1$. If $r_{1} \equiv \frac{-b \pm \sqrt{\Delta}}{2 a}(\bmod p)$, these are given recursively by

$$
r_{n+1} \equiv r_{n}-\frac{f\left(r_{n}\right)}{f^{\prime}\left(r_{n}\right)}\left(\bmod p^{n+1}\right)
$$

Example 2

Solve the polynomial congruence $X^{2} \equiv 17\left(\bmod 19^{n}\right)$ for $n \geq 1$.
Solution. The given congruence is equivalent to $X^{2}-17 \equiv 0$ (mod 19), which has discriminant

$$
\Delta=4 \cdot 17 .
$$

By the law(s) of quadratic reciprocity we have

$$
\left(\frac{\Delta}{19}\right)=\left(\frac{17}{19}\right)=\left(\frac{19}{17}\right)=\left(\frac{2}{17}\right)=1,
$$

so there are two incongruent solutions modulo 19 by Theorem 2.
A quick computation shows that $(\pm 6)^{2} \equiv 36 \equiv-2 \equiv 17$ $(\bmod 19)$, so that $r_{1} \equiv \pm 6(\bmod 19)$.

The general solutions are given by

$$
r_{n+1} \equiv r_{n}-\frac{r_{n}^{2}-17}{2 r_{n}} \equiv \frac{1}{2}\left(r_{n}+\frac{17}{r_{n}}\right)\left(\bmod 19^{n+1}\right)
$$

With $r_{1}=6$ we obtain

$$
\begin{aligned}
& r_{2} \equiv \frac{1}{2}\left(6+\frac{17}{6}\right) \equiv 215\left(\bmod 19^{2}\right) \\
& r_{3} \equiv \frac{1}{2}\left(215+\frac{17}{215}\right) \equiv 937\left(\bmod 19^{3}\right) \\
& r_{4} \equiv \frac{1}{2}\left(937+\frac{17}{937}\right) \equiv 14655\left(\bmod 19^{4}\right)
\end{aligned}
$$

or 19-adically

$$
r=6+11 \cdot 19+2 \cdot 19^{2}+2 \cdot 19^{3}+2 \cdot 19^{4}+8 \cdot 19^{5}+\cdots
$$

Since the other solution modulo 19 is simply $r_{1}^{\prime}=-r_{1}$, we are assured that the remaining solutions are given by

$$
\begin{aligned}
& r_{2}^{\prime} \equiv-215 \equiv 146\left(\bmod 19^{2}\right) \\
& r_{3}^{\prime} \equiv-937 \equiv 5922\left(\bmod 19^{3}\right) \\
& r_{4}^{\prime} \equiv-14655 \equiv 111566\left(\bmod 19^{4}\right)
\end{aligned}
$$

or 19-adically:

$$
r^{\prime}=13+7 \cdot 19+16 \cdot 19^{2}+16 \cdot 19^{3}+16 \cdot 19^{4}+10 \cdot 19^{5}+\cdots
$$

Remark. Because $\sqrt{17}$ is irrational, one can show that the 19-adic "digits" of $\sqrt{17}$ are not eventually periodic.

