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Introduction

Via the CRT, the quadratic congruence X2 = a (mod n) can be
reduced to a system of congruences of the form X2 = a (mod p¢),
where p is prime.

For odd primes, one can show that solutions of X2 = a (mod p),
whose existence can be ascertained by evaluating the Legendre

a . . .
symbol (—) uniquely “lift" to solutions modulo p” for n > 2.
p

The techniques involved apply equally as well to the more general
congruence f(X) =0 (mod p"), where f(X) is a polynomial with
integer coefficients, so this is where we choose to begin.
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Polynomial Congruences and the CRT

Let Z[X] denote the ring of all polynomials in X with integer
coefficients.

For f(X) € Z[X] and n € N we will be interested in the polynomial

congruence
f(X) =0 (mod n). (1)

If n= plelpé92 -+ psr is the canonical form of n, the CRT implies

that (1) is equivalent to the system

f(X)=0(mod p7), 1<i<r.
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Specifically, if R; denotes the set of solutions to f(X) =0
(mod pf"), then for each choice of r; € R; the solution to the
system

X=r(mod p), 1<i<r,

provides a solution to f(X) =0 (mod n), and every solution to the
latter is obtained in this way.

So it suffices to assume that n = p€ for some prime p and e € N.

Write f(X) = agX? + ag_1 X914 + a1 X + ag with a; € Z and
d>1.

For convenience we assume p 1 aqy.
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Derivatives of Polynomials

Definition

For f(X) = agX9 + ag_1X9"1 + - + ag € Z[X] we define its
formal derivative to be

Df(X) = dagX9 !+ (d — 1)ag_1 X972+ +a.

Remarks.

@ The derivative Df is purely algebraic. We do not take limits
to obtain it (as in Calculus).

o If a€ Z, then Da = D(aX?) = 0.

@ One can show that the formal derivative is linear and obeys
the product rule. That is, for f,g € Z[X] and a, b € Z one has

D(af + bg) = aDf + bDg and D(fg) = fDg + gDf.
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Let a € Z. Recall that for any f(X) € Z[X] there exists a unique
f(X) € Z[X] so that

f(X) = (X —a)f(X)+f(a). (2)

Operating at the level of rational functions for a moment, this says

that (XY f
o = =19,

which suggests that f(a) = Df(a).

This is indeed the case. If we differentiate (2) and apply the
product rule, we have

Df(X) = f(X) 4 (X — a)Df(X) = Df(a) = f(a).
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We are now in a position to prove our main result on polynomial
congruences with prime power moduli.

Theorem 1 (Hensel's Lemma)

Let p be a prime and let f(X) € Z[X]. If there exists an n, € Z so
that f(r;) =0 (mod p) and Df(r;) # 0 (mod p), then there exists
a sequence {rp}nen of integers satisfying:

1. rpy1 =1, (mod p") for all n > 1.
2. f(rp) =0 (mod p") for all n > 1.
Moreover, ry, is unique modulo p" for n > 2.

Proof. To prove the existence of r, we induct on n, the case n=1
being provided by our hypotheses.
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So suppose n > 1 and we have found ry for 1 < k < n satisfying
conditions 1 and 2.

Write £(X) = (X — r))f(X) + f(ra) with £(X) € Z[X].

Since f(r,) =0 (mod p"), we can write f(r,) = ap” for some
acZ.

For b € Z, consider r = r, + bp". Clearly r = r, mod p”", and we
have

F(r) = bp"F(r) + f(ra) = (bF(r) + a)p".

Sincer=r,=r-1=rp,—1=---=n (mod p), we also have

f(r) = f(r,) = Df(r,) = Df(r1) £ 0 (mod p).
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Because Df(r1) # 0 (mod p), there is a unique b,+1 (modulo p)
solving the linear congruence

bn+1Df(r1) = —a (mod p).

Taking rpy1 = r = ry+ bpy1p”, we then have

bni1f(rns1) = bnaf(rn) = bpr1Df (1) = —a (mod p).

Thus

f(rn+1) = (bnt1f(ry1) +a)p" =0 (mod p”+1).
div. by p

This completes the induction and proves the existence of the
sequence {rn}.
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To prove uniqueness, suppose that {s,} is another sequence
satisfying 1 and 2.

We will inductively prove that s, = r, (mod p”) for all n > 1. We
have r; = s (mod p) by definition.

Now assume that r, = s, (mod p") for some n > 1 and write

F(X) = (X — rp1)F(X) + F(rns1) with F(X) € Z[X].

We then have

0= f(Sn41) = (Sn+1 — for1)F(Sn1) + F(rar1) (mod p")

= (5n+1 - rn+1)F(5n+1) (mOd pn+1)'

That is, pn+1‘(5n+1 - rn-l-l)f(sn—i-l)'
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However, working modulo p we have

F(snp1) = f(sn) = F(rn) = F(ragp1) = Df(rns1) = DF (1) (mod p).
Since Df(r1) # 0 (mod p) and p is prime, this implies that
(F(sn41),p") = 1.

Therefore, by Euclid's lemma we have

pn+1|(sn+1 - rn-i-l)F(Sn—i-l) = Pn+1|5n+1 — I'ny1

& Spt1 = g1 (mod Pn+1)-

This completes the induction and proves the uniqueness of the
sequence {rn}. O
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Remark

The proof of Hensel's lemma recursively constructs the solution
{ra} of solutions to f(X) =0 (mod p") starting from f(r;) =0
(mod p).

If we dissect the proof a bit, we find that r,1 1 = ry + bpr1p”,
where b, 1Df(r,) = bp1Df(r1) = —a (mod p).

Since p 1 Df(r,), we can write this final congruence as

n

ap n+1
(mOd p) g bn+1P Df( n) (mOd p )

—a
bpi1 = ———
7 Df(ry)

where the inversion is meant to take place in (Z/p™17)*.
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Since f(r,) = ap”, this tells us that

rn-i-l = rn - Df(rn)

Compare this to Newton’s Method for finding real solutions to
f(X) = 0, which starts with an initial approximation x;, then

recursively forms

f(xn)
Xn+1 = Xn - f-/(Xn) .

One can show that the sequence of integers {r,} successively
approximates a true solution to f(X) = 0 in the ring Z, of p-adic
integers.
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Solve the polynomial congruence X3 —2 =0 (mod 5") for
1<n<e6.

Solution. When n =1, one easily checks that r; =3 (mod 5) is
the only solution.

Hensel's lemma implies that for each n > 1 there is a unique
solution r, modulo 57, and it is given recursively by
r3—2

Fne1l =y — "37 (mod 5”+1).
n
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We therefore have

rn=3- 333._322 —3—253 (mod 52),
@E3—% 53—2—3 = 53 (mod 5°%),
r4553—?75;f 553—% = 303 (mod 5%),

rs = 303 — ‘?3’;70_322 =303 — % = 2178 (mod 5°),
re = 2178 — % = 5303 (mod 5°).

When expressed in base 5 these yield the 5-adic root
340-54+2-524+2.5343.5% +1.55 ...

of X3 —2. m



Quadratic Congruences

Let p be an odd prime and consider the congruence
f(X) = aX?+ bX +c =0 (mod p)
with p { a and discriminant A = b? — 4ac.

We have shown that this has two distinct solutions modulo p if
A
and only if (;) =1, both of which are given by the quadratic

formula:

~b+vVA b VA , —b
T 2a T2t 2a 7 a, (Modp)

since A # 0 (mod p).

r
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This implies that Df(r) = 2ar + b # 0 (mod p).
Hensel's lemma therefore implies that the congruence

aX?2+bX+c=0 (mod p")

has exactly two solutions modulo p” for every n > 1, given by
Newton's Method.

Theorem 2

Let p be an odd prime and f(X) = aX? +bX +c. If pfa and
A

(;) =1, then the congruence f(X) =0 (mod p") has exactly

two solutions for each n > 1. If n = _béta‘/z (mod p), these are

given recursively by

f(rn)

rn_;’_]_ =y — f/(r)
n

(mod p"t1).
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Solve the polynomial congruence X? =17 (mod 19”) for n > 1.

Solution. The given congruence is equivalent to X?> — 17 =0
(mod 19), which has discriminant

A=4.17.

By the law(s) of quadratic reciprocity we have

(4)-(5)-()-(3)-

so there are two incongruent solutions modulo 19 by Theorem 2.

A quick computation shows that (£6)?> =36 = —2 = 17
(mod 19), so that r = £6 (mod 19).
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The general solutions are given by

2
ry — 17 1 17 1
= — 4+ — d 19"t1).
2r, 2 <r,, n (mo )

'ny1="In—

With r, = 6 we obtain

1 17
rn==(64+—) =215 (mod 19?),
2 6
1 17\ 3
1 17
=_(9837+_——=)=14 d 19*
n=g <93 + 937> 655 (mod 19%),
or 19-adically

r=6+11-19+2-192+2-.193+2.19* +8.19° + ...
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Since the other solution modulo 19 is simply r{ = —r;, we are
assured that the remaining solutions are given by

ry = —215 = 146 (mod 19?),
ry = —937 = 5922 (mod 19%),
ry = —14655 = 111566 (mod 19%),

or 19-adically:
' =13+7-194+16-192+16-19%3 +16-19* +10-19° +

O

Remark. Because 1/17 is irrational, one can show that the 19-adic
“digits” of /17 are not eventually periodic.
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