
Introduction to Public Key Cryptography

Ryan C. Daileda

Trinity University

Number Theory

Daileda Public Key Cryptography



Introduction

Today we will discuss the essential elements of cryptography,
which is the study and practice of secure communication in the
presence of eavesdroppers.

We will begin by introducing basic terminology and discussing ways
to represent messages as integers.

We will then look at an elementary encryption scheme known as
the Caesar cipher, which turns out to be far from secure.

Finally we will discuss the RSA cryptosystem, which is widely used
today.
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The Basics

Goal. Communicate securely in the presence of eavesdroppers.

Idea. Transmit encoded messages that only the intended recipient
can decode.

Terminology.

plaintext: the message to be sent

ciphertext: the encoded version of the message

alphabet: the symbols used to write the plaintext and
ciphertext

letter: member of the alphabet

encryption/enciphering: the process of converting plaintext to
ciphertext

decryption/deciphering: the process of converting ciphertext
to plaintext
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Message Units

Plaintext/ciphertext are usually broken into blocks called message
units before being enciphered/deciphered.

Examples of message units include single letters, pairs of letters
(digraphs), strings of 100 letters, etc.

We let
P = {plaintext message units},

C = {ciphertext message units}.
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Cryptosystems

An enciphering transformation is a bijection f : P → C. Its inverse
is the deciphering transformation.

A cryptosystem is a quadruple (P, C, f , f −1). Schematically:

P
f
−→ C

f −1

−−→ P.

If m1,m2, . . . ,mr ∈ P and our plaintext is M = m1m2 · · ·mr , the
the resulting ciphertext is

M ′ = f (m1)f (m2) · · · f (mr ).

M ′ is decrypted by applying f −1 to each of its blocks.

Daileda Public Key Cryptography



Numerical Equivalents

It is convenient to represent messages using numbers rather than
letters. There are various ways to do this.

If our alphabet has N letters we can easily biject it with Z/NZ.

For instance, if our alphabet is A–Z with a space:

(space) A B C · · · Y Z

0 1 2 3 · · · 25 26

Message units can then be encoded using base N representations.

Daileda Public Key Cryptography



Suppose our message units are strings of length ℓ:

m1m2 · · ·mℓ,

with each letter mi converted to a member of Z/NZ.

This defines a single integer in base N:

M = mℓN
ℓ−1 +mℓ−1N

ℓ−2 + · · ·+m2N +m1 < Nℓ.

Conversely, any 0 ≤ M < Nℓ has a unique base N representation,
whose “digits” yield a length ℓ message unit.

Warning. With this scheme the order of letters and “digits” will
be reversed.
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Examples

Example 1

Using the 27 letter alphabet discussed above, express the message
HIDE as an integer.

Solution. Since H = 8, I = 9, D = 4, E = 5, we have

M = 5 · 273 + 4 · 272 + 9 · 27 + 8 = 101582 .

Example 2

Express the six-letter message unit M = 359707244 in our 27 letter
alphabet.

Solution. We need to compute the base 27 expansion of M.
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We repeatedly divide by 27 to obtain the “digits” of M.

359707244 = 13322490 · 27 + 14 ,

13322490 = 493425 · 27 + 15 ,

493425 = 18275 · 27 + 0 ,

18275 = 676 · 27 + 23 ,

676 = 25 · 27 + 1 ,

25 = 0 · 27 + 25 .

These are already in the correct order, so we simply convert back
to letters, obtaining the message

NO WAY .
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The Caesar Cipher

Suppose our alphabet is Z/NZ and we using single letter message
units, i.e. we set P = C = Z/NZ.

For any b ∈ Z/NZ we define the shift transformation by

C = f (P) ≡ P + b (mod N).

The deciphering transformation is another shift, given by

P = f −1(C ) ≡ C − b ≡ C + (N − b) (mod N).

This cryptosystem is called the Caesar cipher. The letter b is called
its key.

Knowledge of the (common) key is necessary for both encryption
and decryption.
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Examples

Example 3

Encrypt the message ATTACK AT DAWN using the Caesar cipher
on our 27 letter alphabet with key b = R .

Solution. We convert the message to its numerical equivalents and
shift each by R = 18 modulo 27.

This yields

P : 1 20 20 1 3 11 0 1 20 0 4 1 23 14
C : 19 11 11 19 21 2 18 19 11 17 22 19 14 5

Converted back to letters this becomes

SKKSUBRSKRVSNE .
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Example 4

Decrypt the message ROVZJWO, which was encrypted using a
Caesar cipher with key b = J.

Solution. To decrypt the message we must convert it to its
numerical equivalents and subtract J = 10 modulo 27.

We have:

C : 18 15 22 26 10 23 15
P : 8 5 12 16 0 13 5

This translates to
HELP ME .
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Remarks

In the modern day, the Caesar cipher is susceptible to
frequency analysis: analyzing how often each letter occurs in
the ciphertext.

In English, the most commonly occurring letter likely
corresponds to E (if the text is long enough).

Knowing this is enough to crack the cipher, since if the most
commonly occurring letter is x , then we must have
f (5) = 5 + b ≡ x (mod 27), so that b ≡ x − 5 (mod 27).

Perhaps even more realistically, a modern computer can
simply try every possible key (there are only 27 in our
alphabet) until a readable message is obtained.
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Public Key Cryptography

Definition

Let (P, C, f , f −1) be a cryptosystem. The information needed to
compute f is called the encryption key and is denoted KE . The
information needed to compute f −1 is called the decryption key
and is denoted KD .

So, for the Caesar cipher we have

KE = KD = b.

In particular,

knowledge of KE = knowledge of KD .
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This means that:

If you can encrypt a message, you can decrypt any message.

Both sender and recipient must know KE and keep it secret.

The goal of public key cryptography is to break this symmetry.

Let S denote the message sender and R the (intended) recipient.

We seek cryptosystems for which

knowledge of KE gives no (practical) information about KD .

Daileda Public Key Cryptography



Using such a cryptosystem, if R keeps KD secret, we can then
make KE public information, so that S can be anyone.

That is, anyone can securely communicate a message to R , and
only R has to keep KD secret.

This is advantageous since, as Benjamin Franklin observed, “Three
may keep a secret, if two of them are dead.”

Put another way, f is “easy” to compute (by anyone with KE ), but
f −1 is “hard” to compute (without KD).

Such an f is called a trapdoor function and such a cryptosystem is
called a public key cryptosystem.
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Given a public key cryptosystem and a group of individuals using
it, each individual is assigned a key pair (KE ,KD).

The decryption keys KD are kept secret by each individual, while
every KE is published in a directory.

With this arrangement every member of the group can easily
communicate securely with any other member.
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RSA

Developed by Rivest, Shamir and Adleman (ca. 1977), the RSA
public key cryptosystem works as follows.

Each individual in the group:

chooses two prime numbers p and q;

chooses a (random) e with (e, (p − 1)(q − 1)) = 1;

sets n = pq and publishes KE = (n, e);

uses the EA to find d so that de ≡ 1 (mod (p − 1)(q − 1)),
and keeps KD = (n, d) secret.
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We take P = C = Z/nZ and for P ∈ P we define

C = f (P) ≡ Pe (mod n).

Since
ϕ(n) = ϕ(pq) = (p − 1)(q − 1)

and de ≡ 1 (mod (p − 1)(q − 1)), Euler’s Theorem implies

Cd = (Pe)d = Ped ≡ P (mod n).

Thus for C ∈ C,
f −1(C ) ≡ Cd (mod n).
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Example

If p = 17 and q = 31, then n = pq = 527 and (p − 1)(q − 1)
= 16 · 30 = 480.

Suppose we choose e = 377. Then d ≡ e−1 ≡ 233 (mod 480).

Suppose our plaintext block is P = 300. Then our ciphertext is

C ≡ Pe ≡ 300377 ≡ 210 (mod 572).

In the other direction, suppose we receive the cipertext C = 432.
The the corresponding plaintext is

P ≡ Cd ≡ 432233 ≡ 333 (mod 572).

Daileda Public Key Cryptography



The Trapdoor

I practice, RSA uses extremely large primes (100 digits or more).
Why does this make RSA secure?

Since KE = (n, e) is public knowledge, anyone can encrypt a
message and send it.

However, in order to decrypt a message, one needs KD = d , which
is the multiplicative inverse of e in Z/(p − 1)(q − 1)Z.

Claim. The function f (P) ≡ Pe (mod n) is a trapdoor function.

Proof. Repeated squaring provides an efficient procedure for
computing Pe , even for large (hundreds of digits) n.

So f is “easy” to compute.
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It is also easy to compute d via the EA, provided we are given the
modulus

ϕ(n) = (p − 1)(q − 1).

But knowledge of ϕ(n) = (p − 1)(q − 1) and n = pq is equivalent
to knowledge of q and q.

To see this first observe that if we know p and q, then it is trivial
to compute pq and (p − 1)(q − 1).

So suppose we know n = pq and ϕ(n) = (p − 1)(q − 1).

Note that ϕ(n) = pq − (p + q) + 1 = n − (p + q) + 1, so that
p + q = n − ϕ(n) + 1.

Daileda Public Key Cryptography



It follows that

(X −p)(X −q) = X 2− (p+q)X +pq = X 2− (n−ϕ(n)+1)X +n,

so that p and q can be computed using n, ϕ(n) and the quadratic
formula.

So knowledge of n and ϕ(n) is equivalent to knowledge of the
factorization n = pq.

However, factorization of integers is a notoriously difficult problem!

We conclude that KD , and hence f −1, is “hard” to compute.
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Our proof shows that an eavesdropper’s difficulty in cracking a
given RSA cipher (i.e. determining KD from KE ) rests in the
difficulty of factoring n.

Therefore if p and q are large enough to make the factorization of
n = pq prohibitive, the enciphering transformation f should be
secure.

Remark. Strictly speaking, the application of Euler’s Theorem in
RSA requires P ∈ (Z/nZ)×. However:

One can show that Ped ≡ P (mod n) even if P has factors in
common with n.

If (P , n) 6= 1, then by computing (P , n) we can factor n.
Given that factoring n is “hard,” such a plaintext block is not
likely to be encountered.
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