The Knapsack Cryptosystem

Ryan C. Daileda

Trinity University

Number Theory

Today we will briefly consider a public key cryptosystem whose security rests on the difficulty in solving a certain combinatorial problem.

The idea is to encode messages using a scrambled "base" system in such a way that only the intended recipient can retrieve the message's "digits" (bits).

Although no longer utilized in practice, this cryptosystem is nonetheless another interesting example.

Suppose we are given a "knapsack" of volume $V \in \mathbb{N}$, and "objects" of volume $a_1, a_2, \ldots, a_r \in \mathbb{N}$.

The *knapsack problem* asks whether or not it it possible to choose a subset of the a_i whose total volume is V.

That is, do there exist $\epsilon_i \in \{0,1\}$ so that

$$V = \epsilon_1 a_1 + \epsilon_2 a_2 + \cdots + \epsilon_r a_r?$$

In general, this is an extremely difficult question to answer.

Example

Suppose that $a_1 = 2$, $a_2 = 5$, $a_3 = 6$, $a_4 = 9$, $a_5 = 13$. If V = 20, the knapsack problem has a solution, since

$$20 = 0 \cdot 2 + 1 \cdot 5 + 1 \cdot 6 + 1 \cdot 9 + 0 \cdot 13.$$

However, if V = 23, there is no solution to the knapsack problem. To see this, notice that the sum of the first 4 terms is

$$2+5+6+9=22$$
,

which means that if there is a solution, then $\epsilon_5 = 1$.

But then we must be able to choose from 2, 5, 6 and 9 and get a sum of 10, which is clearly impossible.

Superincreasing Sequences

Definition

We say that a sequence $\{a_i\}$ is *superincreasing* if

$$a_n > a_{n-1} + a_{n-2} + \cdots + a_1$$

for all $n \ge 2$.

Examples.

- The sequence *a*₁ = 3, *a*₂ = 4, *a*₃ = 10, *a*₄ = 20 is superincreasing.
- The sequence *a*₁ = 1, *a*₂ = 2, *a*₃ = 4, *a*₄ = 8, *a*₅ = 16 is superincreasing.
- More generally, given $b \ge 2$, the sequence $a_1 = 1$, $a_2 = b$, $a_3 = b^2, \ldots, a_i = b^{i-1}, \ldots, a_r = b^{r-1}$ is superincreasing.

An important feature of solutions to knapsack problems involving superincreasing sequences is that they are unique.

Theorem 1

Let $\{a_i\} \subset \mathbb{N}$ be a superincreasing sequence. If $\epsilon_i, \delta_i \in \{0, 1\}$ and

$$\sum_{i=1}^r \epsilon_i \mathbf{a}_i = \sum_{i=1}^r \delta_i \mathbf{a}_i,$$

then $\epsilon_i = \delta_i$ for all *i*.

Proof. We induct on *r*. If r = 1, the result is trivial, since $\epsilon_1 a_1 = \delta_1 a_1$ implies $\epsilon_1 = \delta_1$, as $a_1 \neq 0$.

Now let r > 1 and assume the result for all superincreasing sequences of length < r.

Then

$$\sum_{i \leq r} \epsilon_i a_i = \sum_{i \leq r} \delta_i a_i \implies |\epsilon_r - \delta_r| a_r = \left| \sum_{i < r} (\delta_r - \epsilon_r) a_i \right| \leq \sum_{i < r} a_i < a_r.$$

Since $|\epsilon_r - \delta_r| \le 1$, this implies that $\epsilon_r = \delta_r$. Thus

$$\sum_{i< r} \epsilon_i \mathbf{a}_i = \sum_{i< r} \delta_i \mathbf{a}_i,$$

and $\epsilon_i = \delta_i$ for i < r by the inductive hypothesis.

Therefore $\epsilon_i = \delta_i$ for all $i \leq r$. This completes the inductive step, and the proof.

It is relatively easy to solve a knapsack problem involving a superincreasing sequence $\{a_i\}$.

Suppose we are given $V \in \mathbb{N}$ and we want to determine $\epsilon_i \in \{0, 1\}$ so that

$$V=\sum_{i=1}^{r}\epsilon_{i}a_{i}.$$

Let *n* be the largest index so that $a_n \leq V$. Then $a_i > V$, and hence $\epsilon_i = 0$, for i > n.

Furthermore,

$$\sum_{i< n} a_i < a_n \le V,$$

which means that we can't have $\epsilon_n = 0$. Thus $\epsilon_n = 1$.

Now recursively repeat this procedure for $V - a_n$.

Consider the superincreasing sequence $a_1 = 3$, $a_2 = 4$, $a_3 = 10$, $a_4 = 20$, $a_5 = 42$.

To solve the knapsack problem

$$55 = 3\epsilon_1 + 4\epsilon_2 + 10\epsilon_3 + 20\epsilon_4 + 42\epsilon_5,$$

we start by observing 42 < 55, so that we must have $\epsilon_5 = 1$.

We then consider 55 - 42 = 7. Now we have $a_2 < 7 < a_3$, so $\epsilon_4 = \epsilon_3 = 0$ and $\epsilon_2 = 1$.

Finally we have $a_1 = 3 = 7 - 4$, so that $\epsilon_1 = 1$. Therefore

$$55 = 3 \cdot 1 + 4 \cdot 1 + 10 \cdot 0 + 20 \cdot 0 + 42 \cdot 1.$$

A public key cryptosystem utilizing the knapsack problem was developed by Merkle and Hellman in 1978.

Every user:

- 1. Chooses a superincreasing sequence $\{a_i\}_{i=1}^r$, a modulus $m > 2a_r$, and a multiplier a with (a, m) = 1.
- 2. Computes $b_i \equiv aa_i \pmod{m}$.
- 3. Publishes the encryption key $K_E = \{b_i\}$.
- 4. Keeps $\{a_i\}_{i=1}^r$, *m* and *a* secret.

To encrypt a message to the individual with public key $K_E = \{b_i\}_{i=1}^r$, the sender first converts the plaintext into binary blocks of length r.

A given binary block $P = \epsilon_1 \epsilon_2 \cdots \epsilon_r$ is converted to the ciphertext block

$$C=\sum_{i=1}^{r}\epsilon_{i}b_{i}.$$

Because the transformed sequence $\{b_i\}$ is no longer superincreasing, determining the ϵ_i from *C* is "hard" for an eavesdropper, even given the sequence $\{b_i\}$.

Unpacking the Knapsack

The decryption key is $K_D = (\{a_i\}, m, b)$, where *b* satisfies $ab \equiv 1 \pmod{m}$, which is easily computed from *a* and *m* using the EA. The message recipient computes $S \equiv bC \pmod{m}$, with $0 \leq S < m$.

Notice that

$$S \equiv bC \equiv \sum_{i=1}^{r} \epsilon_i bb_i \equiv \sum_{i=1}^{r} \epsilon_i baa_i \equiv \sum_{i=1}^{r} \epsilon_i a_i \pmod{m}.$$

Because $\{a_i\}$ is superincreasing,

$$0 \leq \sum_{i=1}^{r} \epsilon_i a_i < a_r + a_r = 2a_r < m$$

It follows that $S = \sum_{i=1}^{r} \epsilon_i a_i$, and the recipient can now compute the plaintext $P = \epsilon_1 \epsilon_2 \cdots \epsilon_r$ using the procedure described earlier.

Example 1

Encrypt the plaintext block 01001 using the superincreasing sequence $\{3, 4, 10, 20, 42\}$ with modulus m = 90 and multiplier a = 17.

Solution. We first multiply our sequence by 17 (modulo 90), obtaining {51,68,80,70,84}.

Our ciphertext is then $C = 1 \cdot 68 + 1 \cdot 84 = 152$.

To decrypt we compute $17^{-1} \equiv 53 \pmod{90}$ then multiply:

 $53 \cdot C = 53 \cdot 152 \equiv 62 \cdot 53 \equiv 46 \pmod{90}$

Since $46 = 1 \cdot 4 + 1 \cdot 42$, we recover the plaintext 01001.

Remark. While certainly interesting, the Merkle-Hellman knapsack cryptosystem (and its variants) were proven to be insecure during the 1980s.

It turns out that the transformation $b_i \equiv aa_i \pmod{m}$ doesn't sufficiently "disguise" the superincreasing nature of $\{a_i\}$.