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Introduction

Today we will briefly consider a public key cryptosystem whose
security rests on the difficulty in solving a certain combinatorial
problem.

The idea is to encode messages using a scrambled “base” system
in such a way that only the intended recipient can retrieve the
message’s “digits” (bits).

Although no longer utilized in practice, this cryptosystem is
nonetheless another interesting example.
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Knapsack Problems

Suppose we are given a “knapsack” of volume V ∈ N, and
“objects” of volume a1, a2, . . . , ar ∈ N.

The knapsack problem asks whether or not it it possible to choose
a subset of the ai whose total volume is V .

That is, do there exist ǫi ∈ {0, 1} so that

V = ǫ1a1 + ǫ2a2 + · · ·+ ǫrar?

In general, this is an extremely difficult question to answer.
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Example

Suppose that a1 = 2, a2 = 5, a3 = 6, a4 = 9, a5 = 13.

If V = 20, the knapsack problem has a solution, since

20 = 0 · 2 + 1 · 5 + 1 · 6 + 1 · 9 + 0 · 13.

However, if V = 23, there is no solution to the knapsack problem.

To see this, notice that the sum of the first 4 terms is

2 + 5 + 6 + 9 = 22,

which means that if there is a solution, then ǫ5 = 1.

But then we must be able to choose from 2, 5, 6 and 9 and get a
sum of 10, which is clearly impossible.
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Superincreasing Sequences

Definition

We say that a sequence {ai} is superincreasing if

an > an−1 + an−2 + · · ·+ a1

for all n ≥ 2.

Examples.

The sequence a1 = 3, a2 = 4, a3 = 10, a4 = 20 is
superincreasing.

The sequence a1 = 1, a2 = 2, a3 = 4, a4 = 8, a5 = 16 is
superincreasing.

More generally, given b ≥ 2, the sequence a1 = 1, a2 = b,
a3 = b2, . . . , ai = bi−1, . . . , ar = br−1 is superincreasing.
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An important feature of solutions to knapsack problems involving
superincreasing sequences is that they are unique.

Theorem 1

Let {ai} ⊂ N be a superincreasing sequence. If ǫi , δi ∈ {0, 1} and

r
∑

i=1

ǫiai =

r
∑

i=1

δiai ,

then ǫi = δi for all i .

Proof. We induct on r . If r = 1, the result is trivial, since
ǫ1a1 = δ1a1 implies ǫ1 = δ1, as a1 6= 0.
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Now let r > 1 and assume the result for all superincreasing
sequences of length < r .

Then

∑

i≤r

ǫiai =
∑

i≤r

δiai ⇒ |ǫr − δr | ar =

∣

∣

∣

∣

∣

∑

i<r

(δr − ǫr )ai

∣

∣

∣

∣

∣

≤
∑

i<r

ai < ar .

Since |ǫr − δr | ≤ 1, this implies that ǫr = δr . Thus

∑

i<r

ǫiai =
∑

i<r

δiai ,

and ǫi = δi for i < r by the inductive hypothesis.

Therefore ǫi = δi for all i ≤ r . This completes the inductive step,
and the proof.
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It is relatively easy to solve a knapsack problem involving a
superincreasing sequence {ai}.

Suppose we are given V ∈ N and we want to determine ǫi ∈ {0, 1}
so that

V =

r
∑

i=1

ǫiai .

Let n be the largest index so that an ≤ V . Then ai > V , and
hence ǫi = 0, for i > n.

Furthermore,
∑

i<n

ai < an ≤ V ,

which means that we can’t have ǫn = 0. Thus ǫn = 1.

Now recursively repeat this procedure for V − an.
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Example

Consider the superincreasing sequence a1 = 3, a2 = 4, a3 = 10,
a4 = 20, a5 = 42.

To solve the knapsack problem

55 = 3ǫ1 + 4ǫ2 + 10ǫ3 + 20ǫ4 + 42ǫ5,

we start by observing 42 < 55, so that we must have ǫ5 = 1.

We then consider 55− 42 = 7. Now we have a2 < 7 < a3, so
ǫ4 = ǫ3 = 0 and ǫ2 = 1.

Finally we have a1 = 3 = 7− 4, so that ǫ1 = 1. Therefore

55 = 3 · 1 + 4 · 1 + 10 · 0 + 20 · 0 + 42 · 1.
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Knapsack Encryption

A public key cryptosystem utilizing the knapsack problem was
developed by Merkle and Hellman in 1978.

Every user:

1. Chooses a superincreasing sequence {ai}
r

i=1, a modulus
m > 2ar , and a multiplier a with (a,m) = 1.

2. Computes bi ≡ aai (mod m).

3. Publishes the encryption key KE = {bi}.

4. Keeps {ai}
r

i=1, m and a secret.
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To encrypt a message to the individual with public key
KE = {bi}

r

i=1, the sender first converts the plaintext into binary
blocks of length r .

A given binary block P = ǫ1ǫ2 · · · ǫr is converted to the ciphertext
block

C =

r
∑

i=1

ǫibi .

Because the transformed sequence {bi} is no longer
superincreasing, determining the ǫi from C is “hard” for an
eavesdropper, even given the sequence {bi}.
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Unpacking the Knapsack

The decryption key is KD = ({ai},m, b), where b satisfies ab ≡ 1
(mod m), which is easily computed from a and m using the EA.

The message recipient computes S ≡ bC (mod m), with
0 ≤ S < m.

Notice that

S ≡ bC ≡

r
∑

i=1

ǫibbi ≡

r
∑

i=1

ǫibaai ≡

r
∑

i=1

ǫiai (mod m).

Because {ai} is superincreasing,

0 ≤

r
∑

i=1

ǫiai < ar + ar = 2ar < m.
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It follows that S =

r
∑

i=1

ǫiai , and the recipient can now compute

the plaintext P = ǫ1ǫ2 · · · ǫr using the procedure described earlier.

Example 1

Encrypt the plaintext block 01001 using the superincreasing
sequence {3, 4, 10, 20, 42} with modulus m = 90 and multiplier
a = 17.

Solution. We first multiply our sequence by 17 (modulo 90),
obtaining {51, 68, 80, 70, 84}.

Our ciphertext is then C = 1 · 68 + 1 · 84 = 152 .
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To decrypt we compute 17−1 ≡ 53 (mod 90) then multiply:

53 · C = 53 · 152 ≡ 62 · 53 ≡ 46 (mod 90)

Since 46 = 1 · 4 + 1 · 42, we recover the plaintext 01001.

Remark. While certainly interesting, the Merkle-Hellman knapsack
cryptosystem (and its variants) were proven to be insecure during
the 1980s.

It turns out that the transformation bi ≡ aai (mod m) doesn’t
sufficiently “disguise” the superincreasing nature of {ai}.
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