Pythagorean Triples

Ryan C. Daileda

Trinity University

Number Theory

Introduction

Today we will consider the diophantine equation $x^{2}+y^{2}=z^{2}$.

This is trivial to solve in \mathbb{Z} if any of x, y or z is zero, and we may clearly change the signs of x, y and z at will.

So we may as well assume $x, y, z \in \mathbb{N}$.

In this context we will provide a complete solution to $x^{2}+y^{2}=z^{2}$.

Pythagorean Triples

Definition

A pythagorean triple is a tuple $(x, y, z) \in \mathbb{N}^{3}$ satisfying $x^{2}+y^{2}=z^{2}$. We say that (x, y, z) is primitive if it also satisfies $\operatorname{gcd}(x, y, z)=1$.

Goal. Describe all pythagorean triples.
Notice that if (x, y, z) is a pythagorean triple and $d=\operatorname{gcd}(x, y, z)$, then

$$
x^{2}+y^{2}=d^{2}\left(\frac{x}{d}\right)^{2}+d^{2}\left(\frac{y}{d}\right)^{2}=d^{2}\left(\left(\frac{x}{d}\right)^{2}+\left(\frac{y}{d}\right)^{2}\right)=d^{2}\left(\frac{z}{d}\right)^{2}
$$

Cancelling d^{2} we find that $(x / d, y / d, z / d)$ is also a pythagorean triple, now primitive since $\operatorname{gcd}(x / d, y / d, z / d)=1$.

Moral. It suffices to describe all primitive pythagorean triples (the rest can be obtained by scaling).

We need a few preparatory lemmas.

Lemma 1

Let (x, y, z) be a primitive pythagorean triple. Then $\operatorname{gcd}(x, y)=\operatorname{gcd}(x, z)=\operatorname{gcd}(y, z)=1$.

Proof. Suppose $\operatorname{gcd}(x, y) \neq 1$. Then there is a prime p so that $p \mid \operatorname{gcd}(x, y)$.

Then $p \mid x^{2}+y^{2}=z^{2}$, so that $p \mid z$ (since p is prime).
But then p is a common divisor of x, y and z, so that $p \mid \operatorname{gcd}(x, y, z)$, contradicting primitivity.

The other two cases are entirely similar.

Lemma 2

Let (x, y, z) be a primitive pythagorean triple. Then exactly one of x and y is even, and z is odd.

Proof. By Lemma 1, x and y cannot both be even. We need to show that they cannot both be odd either.

Suppose otherwise. Then $x^{2} \equiv y^{2} \equiv 1(\bmod 4)$.
Therefore $z^{2}=x^{2}+y^{2} \equiv 2(\bmod 4)$.

But every square is congruent to either 0 or 1 modulo 4 , so this is a contradiction.

This establishes that x and y have opposite parity. Therefore their squares do, too.

It follows that $z^{2}=x^{2}+y^{2}$ is odd, and hence z is odd as well. \square
As a consequence of Lemma 2, we may assume WLOG that if (x, y, z) is a primitive pythagorean triple, then x is even while y and z are odd.

Then $x^{2}=z^{2}-y^{2}=(z-y)(z+y)$, and all three of $x, z-y$ and $z+y$ are even.

Dividing by 4 this becomes

$$
\left(\frac{x}{2}\right)^{2}=\left(\frac{z-y}{2}\right)\left(\frac{z+y}{2}\right)
$$

Notice that

$$
\frac{z-y}{2}+\frac{z+y}{2}=z \quad \text { and } \quad \frac{z+y}{2}-\frac{z-y}{2}=y
$$

Therefore any common divisor $\frac{z-y}{2}$ and $\frac{z+y}{2}$ is a common divisor of y and z.

But $\operatorname{gcd}(y, z)=1$, so that we must have $\operatorname{gcd}\left(\frac{z-y}{2}, \frac{z+y}{2}\right)=1$.
We now need one more lemma.

Lemma 3

Let $a, b, c, n \in \mathbb{N}$. If $\operatorname{gcd}(a, b)=1$ and $a b=c^{n}$, then there exist $r, s \in \mathbb{N}$ so that $a=r^{n}$ and $b=s^{n}$.

Proof. Because $\operatorname{gcd}(a, b)=1$, we can appeal to the Fundamental Theorem of Arithmetic to write

$$
a=p_{1}^{e_{1}} \cdots p_{\ell}^{e_{\ell}} \quad \text { and } \quad b=q_{1}^{f_{1}} \cdots q_{m}^{f_{m}}
$$

where $p_{1}, \ldots, p_{\ell}, q_{1}, \ldots, q_{m}$ are distinct primes.
The Fundamental Theorem then implies that

$$
c^{n}=a b=p_{1}^{e_{1}} \cdots p_{\ell}^{e_{\ell}} q_{1}^{f_{1}} \cdots q_{m}^{f_{m}}
$$

must be the canonical factorization of c^{n}.
But if $c=\pi_{1}^{g_{1}} \cdots \pi_{k}^{g_{k}}$ is the canonical factorization of c, then

$$
c^{n}=\pi_{1}^{n g_{1}} \cdots \pi_{k}^{n g_{k}}
$$

is also the canonical factorization of c^{n}.

Because canonical forms are unique, it follows that $n \mid e_{i}$ and $n \mid f_{j}$ for all i, j.
Then $a=r^{n}$ and $b=s^{n}$ where

$$
r=p_{1}^{e_{1} / n} \cdots p_{\ell}^{e_{e} / n} \quad \text { and } \quad s=q_{1}^{f_{1} / n} \cdots q_{m}^{f_{m} / n}
$$

are both integers.
Returning to our primitive pythagorean triple, we had

$$
\left(\frac{x}{2}\right)^{2}=\left(\frac{z-y}{2}\right)\left(\frac{z+y}{2}\right)
$$

with $\operatorname{gcd}\left(\frac{z-y}{2}, \frac{z+y}{2}\right)=1$.
By Lemma 3, we conclude that

$$
\frac{z-y}{2}=r^{2} \quad \text { and } \quad \frac{z+y}{2}=s^{2}
$$

for some $r, s \in \mathbb{N}$.

Thus

$$
z=\frac{z-y}{2}+\frac{z+y}{2}=r^{2}+s^{2}
$$

and

$$
y=\frac{z+y}{2}-\frac{z-y}{2}=s^{2}-r^{2} .
$$

Note that we must have $s>r$ since $y \in \mathbb{N}$.
Moreover

$$
\begin{aligned}
x^{2} & =z^{2}-y^{2}=\left(r^{2}+s^{2}\right)^{2}-\left(s^{2}-r^{2}\right)^{2} \\
& =\left(r^{4}+2 r^{2} s^{2}+s^{4}\right)-\left(s^{4}-2 r^{2} s^{2}+r^{4}\right) \\
& =4 r^{2} s^{2},
\end{aligned}
$$

which implies that $x=2 r s$ (exercise).

Finally, suppose that p is a prime dividing r and s.
Then

$$
p \mid s^{2}-r^{2}=y \quad \text { and } \quad p \mid r^{2}+s^{2}=z
$$

so that $p \mid \operatorname{gcd}(y, z)=1$, a contradiction. We conclude that $\operatorname{gcd}(r, s)=1$.
Moreover, we must have $s \not \equiv r(\bmod 2)$, otherwise $y \equiv 0(\bmod 2)$. This proves half of our main result.

Theorem 1

The tuple $(x, y, z) \in \mathbb{N}^{3}$ is a primitive pythagorean triple (with x even) if and only if there exist natural numbers $s>r$ of opposite parity with $\operatorname{gcd}(r, s)=1$ so that

$$
x=2 r s, \quad y=s^{2}-r^{2}, \quad z=s^{2}+r^{2}
$$

The Converse

To complete the proof of Theorem 1, suppose that we are given $s>r \geq 1$ of opposite parity with $\operatorname{gcd}(r, s)=1$, and let

$$
x=2 r s, \quad y=s^{2}-r^{2}, \quad z=s^{2}+r^{2} .
$$

That $x^{2}+y^{2}=z^{2}$ is a straightforward algebraic identity.
We only need to show $\operatorname{gcd}(x, y, z)=1$. Suppose this is not the case. Then there is a prime p so that $p|x, p| y$ and $p \mid z$.

It follows that

$$
p \mid y+z=2 s^{2} \quad \text { and } \quad p \mid z-y=2 r^{2}
$$

If $p \neq 2$, then $p \mid s^{2}$ and $p \mid r^{2}$, which implies $p \mid s$ and $p \mid r$, which contradicts $\operatorname{gcd}(r, s)=1$.

So we must have $p=2$. But then $p \mid y$ implies

$$
s \equiv s^{2} \equiv r^{2} \equiv r(\bmod 2)
$$

another contradiction.

This proves the reverse implication of Theorem 1, and therefore completes the proof.

Examples

Here are the first few primitive pythagorean triples.

r	s	x	y	z
1	2	4	3	5
1	4	8	15	17
1	6	12	35	37
2	3	12	5	13
2	7	28	45	53
2	5	20	21	29
3	4	24	7	25
3	8	48	55	73
3	10	60	91	109
4	5	40	9	41
4	7	56	33	65
4	9	72	65	97

A Geometric Approach

There's a variant of the proof of Theorem 1 that is worth mentioning, as it generalizes to arbitrary conic sections.

For now we drop the requirement that $x, y, z \in \mathbb{N}$ and instead allow $x, y, z \in \mathbb{Z}$ with $z \neq 0$.

If (x, y, z) is a pythagorean triple, then $X=\frac{x}{z}$ and $Y=\frac{y}{z}$ are rational numbers satisfying

$$
\begin{equation*}
X^{2}+Y^{2}=1 \tag{1}
\end{equation*}
$$

i.e. (X, Y) is a rational point on the unit circle.

Conversely, if $X=x / z$ and $Y=y / z$ satisfy (1), then (x, y, z) is a pythagorean triple.

So to determine all of the pythagorean triples it suffices to parametrize the rational points on the unit circle.

We use stereographic projection through the "north pole" $(0,1)$. That is, we consider the line $Y=m X+1$ of slope m passing through $(0,1)$.

This intersects the unit circle where

$$
\begin{aligned}
X^{2}+(m X+1)^{2}=1 & \Leftrightarrow\left(m^{2}+1\right) X^{2}+2 m X=0 \\
& \Leftrightarrow X\left(\left(m^{2}+1\right) X+2 m\right)=0 \\
& \Leftrightarrow X=0, \frac{-2 m}{m^{2}+1} \Leftrightarrow Y=1, \frac{1-m^{2}}{m^{2}+1} .
\end{aligned}
$$

The second point

$$
(X, Y)=\left(\frac{-2 m}{m^{2}+1}, \frac{1-m^{2}}{m^{2}+1}\right)
$$

is rational if and only if $m \in \mathbb{Q}$ (exercise).
Conversely, if $\left(X_{0}, Y_{0}\right)$ is a rational point on the unit circle, then the line

$$
Y=Y_{0}+\frac{Y_{0}-1}{X_{0}}\left(X-X_{0}\right)
$$

has rational slope and passes through $(0,1)$ and $\left(X_{0}, Y_{0}\right)$
Let

$$
C(\mathbb{Q})=\left\{(X, Y) \mid X, Y \in \mathbb{Q}, X^{2}+Y^{2}=1\right\}
$$

denote the set of rational points on the unit circle.

The upshot of our reasoning above is that there is a bijection

$$
\begin{aligned}
\pi: \mathbb{Q} & \rightarrow C(\mathbb{Q}) \\
m & \mapsto\left(\frac{-2 m}{m^{2}+1}, \frac{1-m^{2}}{m^{2}+1}\right) .
\end{aligned}
$$

Write $m=r / s$. Then we have

$$
\pi(r / s)=\left(\frac{-2 r s}{r^{2}+s^{2}}, \frac{s^{2}-r^{2}}{r^{2}+s^{2}}\right)
$$

With a little more work one can show that if $\operatorname{gcd}(r, s)=1$, then:

- The coordinates of $\pi(r / s)$ are reduced if $r \not \equiv s(\bmod 2)$.
- When $r \equiv s \equiv 1(\bmod 2)$, then $\pi(r / s)=\left(\frac{v^{2}-u^{2}}{u^{2}+v^{2}}, \frac{2 u v}{u^{2}+v^{2}}\right)$ is in reduced form, with $\operatorname{gcd}(u, v)=1$ and $u \not \equiv v(\bmod 2)$.

So, up to interchanging X and Y (and maybe changing a sign), in reduced form we have

$$
X=\frac{-2 r s}{r^{2}+s^{2}} \quad \text { and } \quad Y=\frac{s^{2}-r^{2}}{r^{2}+s^{2}}
$$

for rational points on the unit circle, with $\operatorname{gcd}(r, s)=1$ and $r \not \equiv s$ $(\bmod 2)$.

This provides the classification of Theorem 1.

Example

Let's illustrate the case in which $r \equiv s \equiv 1(\bmod 2)$.

Take $r=1$ and $s=3$. Then

$$
\begin{aligned}
\pi(1 / 3) & =\left(\frac{-2 \cdot 1 \cdot 3}{1^{2}+3^{2}}, \frac{3^{2}-1^{2}}{1^{2}+3^{2}}\right)=\left(\frac{-6}{10}, \frac{8}{10}\right) \\
& =\left(\frac{-3}{5}, \frac{4}{5}\right)=\left(\frac{1^{2}-2^{2}}{1^{2}+2^{2}}, \frac{2 \cdot 1 \cdot 2}{2^{2}+1^{2}}\right)
\end{aligned}
$$

which yields the primitive pythagorean triple $(3,4,5)$.

The moral is that the function π captures all primitive pythagorean triples, without the need to assume x is even.

