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Introduction

Today we will consider the diophantine equation x2 + y2 = z2.

This is trivial to solve in Z if any of x , y or z is zero, and we may
clearly change the signs of x , y and z at will.

So we may as well assume x , y , z ∈ N.

In this context we will provide a complete solution to x2 + y2 = z2.
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Pythagorean Triples

Definition

A pythagorean triple is a tuple (x , y , z) ∈ N3 satisfying
x2 + y2 = z2. We say that (x , y , z) is primitive if it also satisfies
gcd(x , y , z) = 1.

Goal. Describe all pythagorean triples.

Notice that if (x , y , z) is a pythagorean triple and d = gcd(x , y , z),
then

x2+y2 = d2
( x

d

)2

+d2
(y

d

)2

= d2

(

( x

d

)2

+
(y

d

)2
)

= d2
( z

d

)2

.

Cancelling d2 we find that (x/d , y/d , z/d) is also a pythagorean
triple, now primitive since gcd(x/d , y/d , z/d) = 1.
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Moral. It suffices to describe all primitive pythagorean triples (the
rest can be obtained by scaling).

We need a few preparatory lemmas.

Lemma 1

Let (x , y , z) be a primitive pythagorean triple. Then
gcd(x , y) = gcd(x , z) = gcd(y , z) = 1.

Proof. Suppose gcd(x , y) 6= 1. Then there is a prime p so that
p| gcd(x , y).

Then p|x2 + y2 = z2, so that p|z (since p is prime).

But then p is a common divisor of x , y and z , so that
p| gcd(x , y , z), contradicting primitivity.

The other two cases are entirely similar.
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Lemma 2

Let (x , y , z) be a primitive pythagorean triple. Then exactly one of
x and y is even, and z is odd.

Proof. By Lemma 1, x and y cannot both be even. We need to
show that they cannot both be odd either.

Suppose otherwise. Then x2 ≡ y2 ≡ 1 (mod 4).

Therefore z2 = x2 + y2 ≡ 2 (mod 4).

But every square is congruent to either 0 or 1 modulo 4, so this is
a contradiction.
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This establishes that x and y have opposite parity. Therefore their
squares do, too.

It follows that z2 = x2 + y2 is odd, and hence z is odd as well.

As a consequence of Lemma 2, we may assume WLOG that if
(x , y , z) is a primitive pythagorean triple, then x is even while y
and z are odd.

Then x2 = z2 − y2 = (z − y)(z + y), and all three of x , z − y and
z + y are even.

Dividing by 4 this becomes

(x

2

)2

=

(

z − y

2

)(

z + y

2

)

.
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Notice that

z − y

2
+

z + y

2
= z and

z + y

2
−

z − y

2
= y .

Therefore any common divisor z−y
2

and z+y
2

is a common divisor of
y and z .

But gcd(y , z) = 1, so that we must have gcd( z−y
2

, z+y
2

) = 1.

We now need one more lemma.

Lemma 3

Let a, b, c , n ∈ N. If gcd(a, b) = 1 and ab = cn, then there exist
r , s ∈ N so that a = rn and b = sn.
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Proof. Because gcd(a, b) = 1, we can appeal to the Fundamental
Theorem of Arithmetic to write

a = pe11 · · · peℓℓ and b = qf11 · · · qfmm ,

where p1, . . . , pℓ, q1, . . . , qm are distinct primes.

The Fundamental Theorem then implies that

cn = ab = pe11 · · · peℓℓ qf11 · · · qfmm

must be the canonical factorization of cn.

But if c = πg1
1 · · · πgk

k is the canonical factorization of c , then

cn = πng1
1 · · · πngk

k

is also the canonical factorization of cn.
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Because canonical forms are unique, it follows that n|ei and n|fj for
all i , j .

Then a = rn and b = sn where

r = p
e1/n
1 · · · p

eℓ/n
ℓ and s = q

f1/n
1 · · · q

fm/n
m

are both integers.

Returning to our primitive pythagorean triple, we had

(x

2

)2

=

(

z − y

2

)(

z + y

2

)

with gcd( z−y
2

, z+y
2

) = 1.

By Lemma 3, we conclude that

z − y

2
= r2 and

z + y

2
= s2,

for some r , s ∈ N.
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Thus

z =
z − y

2
+

z + y

2
= r2 + s2

and

y =
z + y

2
−

z − y

2
= s2 − r2.

Note that we must have s > r since y ∈ N.

Moreover

x2 = z2 − y2 = (r2 + s2)2 − (s2 − r2)2

= (r4 + 2r2s2 + s4)− (s4 − 2r2s2 + r4)

= 4r2s2,

which implies that x = 2rs (exercise).
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Finally, suppose that p is a prime dividing r and s.

Then
p|s2 − r2 = y and p|r2 + s2 = z ,

so that p| gcd(y , z) = 1, a contradiction. We conclude that
gcd(r , s) = 1.

Moreover, we must have s 6≡ r (mod 2), otherwise y ≡ 0 (mod 2).

This proves half of our main result.

Theorem 1

The tuple (x , y , z) ∈ N3 is a primitive pythagorean triple (with x
even) if and only if there exist natural numbers s > r of opposite
parity with gcd(r , s) = 1 so that

x = 2rs, y = s2 − r2, z = s2 + r2.
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The Converse

To complete the proof of Theorem 1, suppose that we are given
s > r ≥ 1 of opposite parity with gcd(r , s) = 1, and let

x = 2rs, y = s2 − r2, z = s2 + r2.

That x2 + y2 = z2 is a straightforward algebraic identity.

We only need to show gcd(x , y , z) = 1. Suppose this is not the
case. Then there is a prime p so that p|x , p|y and p|z .

It follows that

p|y + z = 2s2 and p|z − y = 2r2.
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If p 6= 2, then p|s2 and p|r2, which implies p|s and p|r , which
contradicts gcd(r , s) = 1.

So we must have p = 2. But then p|y implies

s ≡ s2 ≡ r2 ≡ r (mod 2),

another contradiction.

This proves the reverse implication of Theorem 1, and therefore
completes the proof.
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Examples

Here are the first few primitive pythagorean triples.

r s x y z

1 2 4 3 5
1 4 8 15 17
1 6 12 35 37
2 3 12 5 13
2 7 28 45 53
2 5 20 21 29
3 4 24 7 25
3 8 48 55 73
3 10 60 91 109
4 5 40 9 41
4 7 56 33 65
4 9 72 65 97

Daileda Pythagorean Triples



A Geometric Approach

There’s a variant of the proof of Theorem 1 that is worth
mentioning, as it generalizes to arbitrary conic sections.

For now we drop the requirement that x , y , z ∈ N and instead
allow x , y , z ∈ Z with z 6= 0.

If (x , y , z) is a pythagorean triple, then X = x
z
and Y = y

z
are

rational numbers satisfying

X 2 + Y 2 = 1, (1)

i.e. (X ,Y ) is a rational point on the unit circle.

Conversely, if X = x/z and Y = y/z satisfy (1), then (x , y , z) is a
pythagorean triple.
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So to determine all of the pythagorean triples it suffices to
parametrize the rational points on the unit circle.

We use stereographic projection through the “north pole” (0, 1).
That is, we consider the line Y = mX + 1 of slope m passing
through (0, 1).

This intersects the unit circle where

X 2 + (mX + 1)2 = 1 ⇔ (m2 + 1)X 2 + 2mX = 0

⇔ X ((m2 + 1)X + 2m) = 0

⇔ X = 0,
−2m

m2 + 1
⇔ Y = 1,

1−m2

m2 + 1
.
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The second point

(X ,Y ) =

(

−2m

m2 + 1
,
1−m2

m2 + 1

)

is rational if and only if m ∈ Q (exercise).

Conversely, if (X0,Y0) is a rational point on the unit circle, then
the line

Y = Y0 +
Y0 − 1

X0

(X − X0)

has rational slope and passes through (0, 1) and (X0,Y0)

Let
C (Q) = {(X ,Y ) |X ,Y ∈ Q,X 2 + Y 2 = 1}

denote the set of rational points on the unit circle.
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The upshot of our reasoning above is that there is a bijection

π : Q → C (Q),

m 7→

(

−2m

m2 + 1
,
1−m2

m2 + 1

)

.

Write m = r/s. Then we have

π(r/s) =

(

−2rs

r2 + s2
,
s2 − r2

r2 + s2

)

.
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With a little more work one can show that if gcd(r , s) = 1, then:

The coordinates of π(r/s) are reduced if r 6≡ s (mod 2).

When r ≡ s ≡ 1 (mod 2), then π(r/s) =
(

v2
−u2

u2+v2 ,
2uv

u2+v2

)

is in

reduced form, with gcd(u, v) = 1 and u 6≡ v (mod 2).

So, up to interchanging X and Y (and maybe changing a sign), in
reduced form we have

X =
−2rs

r2 + s2
and Y =

s2 − r2

r2 + s2

for rational points on the unit circle, with gcd(r , s) = 1 and r 6≡ s
(mod 2).

This provides the classification of Theorem 1.
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Example

Let’s illustrate the case in which r ≡ s ≡ 1 (mod 2).

Take r = 1 and s = 3. Then

π(1/3) =

(

−2 · 1 · 3

12 + 32
,
32 − 12

12 + 32

)

=

(

−6

10
,
8

10

)

=

(

−3

5
,
4

5

)

=

(

12 − 22

12 + 22
,
2 · 1 · 2

22 + 12

)

,

which yields the primitive pythagorean triple (3, 4, 5).

The moral is that the function π captures all primitive pythagorean
triples, without the need to assume x is even.
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