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Introduction

Consider the Diophantine equation xn + yn = zn.

If n = 2, we have seen that there are an infinitude of solutions that
can (essentially) be parametrized by Q.

Around 1637, in a now-famous marginal note, Fermat claimed to
“have discovered a truly wonderful proof” that when n ≥ 3, this
equation has no solutions in N, “but the margin is too small to
contain it.”

A complete proof of Fermat’s conjecture eluded mathematicians
for over 350 years, when, finally, in the mid 1990s, using the
theories of modular forms and elliptic curves, Andrew Wiles finally
succeeded in proving what is popularly called “Fermat’s Last
Theorem.”
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Fermat’s Equation

For n ≥ 3, we will call the Diophantine equation xn + yn = zn

Fermat’s equation (of degree n).

We will say that a solution to Fermat’s equation is nontrivial if
x , y , z ∈ N.

Fermat’s conjecture is that, for any n ≥ 3, there are no nontrivial
solutions to the equation bearing his name.

Claim. To prove Fermat’s conjecture, it suffices to assume n = 4
or that n is an odd prime.

Proof. If n ≥ 3 is a power of two, then n = 4k for some k ∈ N.
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We then have

xn + yn = zn ⇔ (xk)4 + (yk)4 = (zk)4,

so that a nontrivial solution of the degree n equation yields a
nontrivial solution of the degree 4 equation.

Otherwise, n = pk for some odd prime p, and we have

xn + yn = zn ⇔ (xk)p + (yk)p = (zk)p .

Hence a nontrivial solution of the degree n equation yields a
nontrivial solution of the degree p equation.

The result follows.
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Infinite Descent

Fermat himself provided the first proof of his conjecture in the case
n = 4.

In fact, that he discovered the proof of this special case after he
wrote his marginal note on the general case strongly suggests that
Fermat realized his “remarkable” proof was flawed.

We will give Fermat’s (correct) proof, which uses the Method of
Infinite Descent.

From an assumed nontrivial solution we will construct another
“smaller” one. Repeating this procedure we obtain an indefinitely
decreasing sequence in N, which is impossible.

This means that there can be no nontrivial solutions at all!
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Fermat actually proved the following stronger result, of which his
theorem (for n = 4) is a corollary.

Theorem 1 (Fermat)

The Diophantine equation x4 + y4 = z2 has no solution in N.

Proof. Suppose otherwise. Then there exist x , y , z ∈ N so that
x4 + y4 = z2.

Let d = gcd(x , y). Then

z2 = d4

(

( x

d

)4
+

(y

d

)4
)

⇒ d4|z2 ⇒ d2|z (HW).
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Therefore z/d2 ∈ N and

( x

d

)4
+

(y

d

)4
=

( z

d2

)2
.

That is, (x/d , y/d , z/d2) is a nontrivial solution of the same
equation, with gcd(x/d , y/d) = 1.

So we may assume gcd(x , y) = 1. It then follows that (x2, y2, z) is
a primitive Pythagorean triple.

Interchanging x and y , if necessary, we conclude that there exist
relatively prime s > r > 0 of opposite parity so that

x2 = 2rs, y2 = s2 − r2, z = r2 + s2.
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If s is even and r is odd, we then have

1 ≡ y2 ≡ −r2 ≡ −1 ≡ 3 (mod 4),

which is impossible.

Thus s is odd and r = 2t for some t ∈ N.

We then have x2 = 2rs = 4st, which implies (x/2)2 = st.

Since 1 = gcd(r , s) = gcd(2t, s), we must have gcd(s, t) = 1.

By one of our lemmas from last time, we find that s = a2 and
t = b2 for some a, b ∈ N.
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We now return to the relationship

y2 = s2 − r2 ⇔ r2 + y2 = s2,

which, since gcd(r , s) = 1, tells us that (r , y , s) is a primitive
pythagorean triple.

As we already know that r is even, this means there exist relatively
prime v > u > 0 of opposite parity so that

r = 2uv , y = v2 − u2, s = u2 + v2.

We than have

2uv = r = 2t = 2b2 ⇒ uv = b2 ⇒ u = ξ2, v = υ2,

for some ξ, υ ∈ N, since gcd(u, v) = 1, by the earlier referenced
lemma.

Daileda Fermat’s Last Theorem



We now have s = u2 + v2, s = a2, u = ξ2 and v = υ2.

Substituting the final three equations into the first we obtain

ξ4 + υ4 = a2.

That is, ξ, υ and a furnish another nontrivial solution to
x4 + y4 = z2,and that gcd(ξ, υ) = 1 since gcd(u, v) = 1.

Notice that
a ≤ a2 = s ≤ s2 < r2 + s2 = z .

So every nontrivial solution to x4 + y4 = z2 with gcd(x , y) = 1
yields another with a smaller z value.
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So if a single nontrivial solution to x4 + y4 = z2 exists, we can
construct an indefinitely decreasing sequence of z values in N.

This contradicts the Well Ordering Principle, which means no such
solution can exist.

Remarks.

One can show that Fermat’s proof amounts to repeated
division by 2 on the elliptic curve (an abelian group)
y2 = x3 − 4x .

In fact, a sophisticated generalization of the Method of
Infinite Descent is central to the proof of the Mordell-Weil
Theorem in the theory of elliptic curves.
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Fermat’s Equation of Degree 4

We can now easily prove:

Corollary 1

The Diophantine equation x4 + y4 = z4 has no solution in N.

Proof. This follows from the theorem and the fact that

x4 + y4 = z4 ⇒ x4 + y4 = (z2)2.

So it “only” remains to prove Fermat’s conjecture for odd prime
degree.
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Fermat’s “Remarkable” Proof

So what was Fermat’s “remarkable” proof? One can only
speculate, but many believe it went as follows.

Recall Euler’s formula:

e iθ = cos θ + i sin θ,

where θ ∈ R and i =
√
−1.

Using the addition formulae for sine and cosine, one can use
Euler’s formula to show that

e i(θ+φ) = e iθe iφ.
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This, in turn, implies the familiar law of exponents

(e iθ)n = e inθ,

for n ∈ Z.

Let p be an odd prime and set ζp = e2πi/p . Then

ζpp = (e2πi/p)p = e2πi = cos 2π + i sin 2π = 1.

This tells us that, as an element of C×, ζp has (multiplicative)
order dividing p.

Since p is prime, the order is therefore either 1 or p.
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Since ζp = cos 2π
p
+ i sin 2π

p
6= 1 (exercise), it must be that the

order of ζp is p.

Note that for any k we have

(ζkp )
p = ζkpp = (ζpp )

k = 1.

So ζkp is a root of the polynomial X p − 1, which has no more that
p complex roots.

Because 1, ζp , ζ
2
p , . . . , ζ

p−1
p are all distinct, we conclude that

X p − 1 =

p−1
∏

k=0

(X − ζkp ).
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Now replace X by −X :

−X p − 1 =

p−1
∏

k=0

(−X − ζkp ) = (−1)p
p−1
∏

k=0

(X + ζkp ) = −
p−1
∏

k=0

(X + ζkp )

which implies

X p + 1 =

p−1
∏

k=0

(X + ζkp ).

Now set X = x/y , with x , y ∈ N, and clear denominators to get

xp + yp =

p−1
∏

k=0

(x + yζkp )
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That is, in the number ring

Z[ζp] = {f (ζp) | f (X ) ∈ Z[X ]},

any solution to xp + yp = zp yields the factorization

zp =

p−1
∏

k=0

(x + yζkp ).

If the analogue of the FTA holds in Z[ζp], one can show that this
implies

x + yζp = uαp,

where α ∈ Z[ζp] and u ∈ Z[ζp]
× (i.e. u has a multiplicative inverse

in Z[ζp]).
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A bit more work (see Number Fields by Marcus) shows that this
leads to a contradiction.

So if the elements of Z[ζp] have unique prime factorizations,
xp + yp = zp has no solutions in N!

Many believe that Fermat’s alleged proof was along these lines.

But there’s a problem: Z[ζp] does not always have the unique
factorization property. The first counterexample is Z[ζ23].

In fact, there are only finitely many values of p for which the
unique factorization hypothesis holds.
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Ideals and Regular Primes

In the 19th century, Kummer was able to salvage most of the
argument above by considering the so-called class number of Z[ζp],
which has to do with ideal theory.

He showed that if p does not divide the class number of Z[ζp],
then Fermat’s conjecture is true for degree p.

Such primes are called regular.

But this is still only a partial victory: it is known that there are
infinitely many irregular primes, while the number of regular primes
is unknown.

Daileda Fermat’s Last Theorem



Another Descent

One can also use the Method of Infinite descent to prove the
following familiar result.

Theorem 2

Let n ∈ Z. If n is not a perfect square, then
√
n is irrational.

Proof. Assume, for the sake of contradiction, that n is not a
perfect square, but that

√
n is rational.

Since n is not a perfect square, we then have

√
n = k +

a

b
,

where k = [
√
n],a, b ∈ N and 0 < a/b < 1, i.e. a < b.

Daileda Fermat’s Last Theorem



Multiply both sides by b and square to obtain

b2n = (kb + a)2 = k2b2 + 2abk + a2 ⇒ b|a2 ⇒ a2 = bc ,

for some c ∈ N.

This means that c/a = a/b both represent
√
n − [

√
n], but c/a

has a smaller denominator than a/b (since a < b).

Repeating this process we obtain a strictly decreasing sequence of
positive integers, which contradicts the Well Ordering Principle.
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