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Introduction

An (integral) quadratic form in n variables is a homogeneous
polynomial in X1,X2, . . . ,Xn of degree 2:

Q(X1,X2, . . . ,Xn) =
∑

1≤i≤j≤n

aijXiXj , aij ∈ Z.

One of the central questions in the theory of quadratic forms is
that of representability: for which m ∈ Z does the Diophantine
equation Q(X1, . . . ,Xn) = m admit a solution?

The theory of quadratic forms is rich and deeper than it might first
appear.

We will content ourselves with a particular diagonal form, namely
Q(X1,X2, . . . ,Xn) = X 2

1 + X 2
2 + · · · + X 2

n , and therefore seek to
understand the representability of integers as sums of squares.
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Representation of Integers as Sums of Two Squares

Let n ∈ N and consider the Diophantine equation

X 2 + Y 2 = n. (1)

Question. For which n does (1) have a solution? That is, which
natural numbers can be represented as a sum of two squares?

Our first goal is to give a complete answer to this question.

We begin with a handy observation: if i =
√
−1, then over C we

have the factorization

X 2 + Y 2 = (X + iY )(X − iY ).
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Norms of Complex Numbers

We define the norm N : C → R by

N(a + bi) = (a + bi)(a − bi) = a2 + b2.

Let a + bi = a − bi , the complex conjugate of a + bi . Then

N(z) = zz

for all z ∈ C.

One can show that z + w = z + w and zw = zw for all z ,w ∈ C.

It follows that

N(zw) = (zw)(zw) = (zz)(ww ) = N(z)N(w).
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Thus, for any a, b, c , d ∈ Z we have

(a2 + b2)(c2 + d2) = N(a + bi)N(c + di)

= N((a + bi)(c + di))

= N((ac − bd) + (ad + bc)i)

= (ac − bd)2 + (ad + bc)2.

This proves our first lemma.

Lemma 1

If m, n ∈ Z both have the form X 2 + Y 2, then so does mn.
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Thue’s Lemma

We now need a result on the size of solutions to linear congruences
modulo p.

Lemma 2 (Thue)

Let p be prime and suppose p ∤ a. Then the congruence

aX ≡ Y (mod p)

has a solution x , y with 0 < |x | < √
p and 0 < |y | < √

p.

Proof. We use the pigeonhole principle. Consider the set

S = {ax − y | 0 ≤ x , y <
√
p}.
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The are (1 + [
√
p])2 > (

√
p)2 = p pairs (x , y) defining the

elements of S .

It follows that there exist (x1, y1) 6= (x2, y2) with
x1, y1, x2, y2 ∈ [0,

√
p) so that

ax1 − y1 ≡ ax2 − y2 (mod p) ⇔ a(x1 − x2
︸ ︷︷ ︸

x

) ≡ y1 − y2
︸ ︷︷ ︸

y

(mod p).

If x = 0, then y = y1 − y2 is divisible by p.

But |y1 − y2| <
√
p < p, so that y1 − y2 = 0 as well. This

contradicts (x1, y1) 6= (x2, y2).
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We have the same problem if y = 0. Thus:

0 < |x |, |y | < √
p,

and we are finished.

Remark. Because it relies on the pigeonhole principle, the proof
we have given is nonconstructive.

Examples.

Suppose p = 3 and a = 2. Then x = −1 and y = 1 satisfy
2x = −2 ≡ 1 = y (mod 3), and 0 < |x |, |y | <

√
3.

Suppose p = 5 and a = 2. Then x = 1 and y = 2 satisfy
2x ≡ 2 ≡ y (mod 5), and 0 < |x |, |y | <

√
5.
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We need one more (trivial) lemma.

Lemma 3

If n is odd and represented by X 2 + Y 2, then n ≡ 1 (mod 4).

Proof. If x ∈ Z, then x ≡ 0, 1, 2, 3 (mod 4), which implies that
x2 ≡ 0, 1 (mod 4).

It follows that x2 + y2 ≡ 0, 1, 2 (mod 4) for all x , y ∈ Z. The
result follows.

We are now ready for our first main result.
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Primes Represented by X
2 + Y

2

Theorem 1

Let p be an odd prime. Then p is represented by X 2 + Y 2 if and

only if p ≡ 1 (mod 4).

Proof. The “only if” statement follows from Lemma 3.

So suppose p ≡ 1 (mod 4).

Then

(−1

p

)

= 1, so there is an integer a satisfying a2 ≡ −1

(mod p).

By Thue’s lemma, there exist integers 0 < |x |, |y | < √
p so that

ax ≡ y (mod p).
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We then have

−x2 ≡ a2x2 ≡ y2 (mod p) ⇒ p|x2 + y2.

Write x2 + y2 = kp. Since x , y 6= 0 we must have k ≥ 1. Moreover

kp = x2 + y2 < p + p = 2p ⇒ k < 2.

We conclude that k = 1 and hence x2 + y2 = p, as claimed.

Remark. One can also show that, up to sign changes and the
order of the summands, the expression p = x2 + y2 is unique.
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Integers Represented by X
2 + Y

2

We can now prove the following general result.

Theorem 2

Let n ∈ N and write n = N2m with m square-free. Then n is

represented by X 2 + Y 2 if and only if m is not divisible by any

prime of the form 4k + 3.

Proof. First suppose that m is not divisible by any prime of the
form 4k + 3.

Then m can only be divisible by 2 or primes of the form 4k + 1.

Since 2 = 12 + 12, Theorem 1 implies that m is the product of
primes represented by X 2 + Y 2.
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Lemma 1 (and a quick induction) then implies that m = x2 + y2

for some x , y ∈ Z.

Thus
n = N2m = N2(x2 + y2) = (Nx)2 + (Ny)2,

as needed.

Now for the converse. Suppose that n = N2m = x2 + y2 for some
x , y ∈ Z.

Let d = (x , y) and write x = rd , y = sd , with (r , s) = 1.

Then
n = N2m = d2(r2 + s2).

Because m is square-free, we must have d |N.
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Thus (
N

d

)2

m = r2 + s2.

Let p be any prime dividing m. Then p|r2 + s2.

Since (r , s) = 1, WLOG we have p ∤ r (i.e. p can’t divide both r

and s).

Then r−1 (mod p) exists and we have

s2 ≡ −r2 (mod p) ⇒ (sr−1)2 ≡ −1 (mod p),

which means that p = 2 or

(−1

p

)

= 1 (which implies p ≡ 1

(mod 4)).

This completes the proof.
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Recall that in the decomposition n = N2m with m square-free, the
primes dividing m are precisely those that divide n with an odd
exponent.

We therefore have the following corollary.

Corollary 1

Let n ∈ N. Then n is represented by X 2 + Y 2 if and only if its

prime factors of the form 4k + 3 occur with an even exponent.

Examples.

Since 860 = 22 · 5 · 43, and 43 ≡ 3 (mod 4), 860 cannot be
represented by X 2 + Y 2.

Since 954 = 2 · 32 · 53 and 53 ≡ 1 (mod 4), 954 is represented
by X 2 + Y 2. Indeed, we have 954 = 152 + 272.
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In the second example, we can find the representation by X 2 + Y 2

as follows.

Write 2 = 12 + 12 and 53 = 4 + 49 = 22 + 72.

Then compute

(1 + i)(2 + 7i) = (2− 7) + (7 + 2)i = − 5 + 9i

and take the norm to obtain

2 · 53 = 52 + 92.

Finally multiply by 32 to get

954 = 2 · 32 · 53 = 32(52 + 92) = 152 + 272.
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Representation by X
2 + nY

2

The question of representation of integers by X 2 + nY 2 has been
studied extensively.

For example, an odd prime p has the form X 2 + 27Y 2 iff p ≡ 1
(mod 3) and 2 is a cubic residue of p.

More generally we have:

Theorem 3

Let n ∈ N be squarefree, n 6≡ 3 (mod 4). There is a monic

irreducible polynomial fn(X ) ∈ Z[X ] such that if an odd prime p

divides neither n nor the discriminant of fn, then p = x2 + ny2 iff

(−n

p

)

= 1 and fn(X ) ≡ 0 (mod p) has a solution.
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X
2 + Y

2 + Z
2

The question of representability of integers as sums of three
squares has also been settled.

Theorem 4

A natural number has the form X 2 + Y 2 + Z 2 iff it is not of the
form 4n(8m + 7).

Proof. We will prove that integers of the form 4n(8m + 7) cannot
be represented by X 2 + Y 2 + Z 2. The converse is too difficult to
include here.
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We induct on n ≥ 0. Suppose n = 0. For any integer x we have
x2 ≡ 0, 1, 4 (mod 8). Thus

x2 + y2 + z2 ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8).

In particular, x2 + y2 + z2 6≡ 7 (mod 8), so that we cannot
represent 8m + 7 = 40(8m + 7) as the sum of three squares.

Now let n ≥ 1 and suppose no integer of the form 4n−1(8m + 7)
also has the form X 2 + Y 2 + Z 2.

Assume 4n(8m + 7) = x2 + y2 + z2 for some x , y , z ∈ Z.

Then x2 + y2 + z2 ≡ 0 (mod 4). Since every square is either 0 or
1 modulo 4, this can only happen if x ≡ y ≡ z ≡ 0 (mod 2).
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Write x = 2a, y = 2b and z = 2c . Then

4n(8m + 7) = x2 + y2 + z2 ⇒ 4n−1(8m + 7) = a2 + b2 + c2,

which contradicts our inductive hypothesis. Hence 4n(8m + 7) is
not the sum of three squares, which finishes the induction.

Examples.

Since 299 ≡ 3 (mod 8), Theorem 4 guarantees that 299 is the
sum of three squares. Indeed, 299 = 72 + 92 + 132.

Since 368 = 16 · 23 and 23 ≡ 7 (mod 8), 368 cannot be
expressed as the sum of three squares.
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