Representations of Integers as Sums of Squares

Ryan C. Daileda

Trinity University

Number Theory

Introduction

An (integral) quadratic form in n variables is a homogeneous polynomial in $X_{1}, X_{2}, \ldots, X_{n}$ of degree 2 :

$$
Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j} X_{i} X_{j}, \quad a_{i j} \in \mathbb{Z}
$$

One of the central questions in the theory of quadratic forms is that of representability: for which $m \in \mathbb{Z}$ does the Diophantine equation $Q\left(X_{1}, \ldots, X_{n}\right)=m$ admit a solution?
The theory of quadratic forms is rich and deeper than it might first appear.
We will content ourselves with a particular diagonal form, namely $Q\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}$, and therefore seek to understand the representability of integers as sums of squares.

Representation of Integers as Sums of Two Squares

Let $n \in \mathbb{N}$ and consider the Diophantine equation

$$
\begin{equation*}
X^{2}+Y^{2}=n \tag{1}
\end{equation*}
$$

Question. For which n does (1) have a solution? That is, which natural numbers can be represented as a sum of two squares?

Our first goal is to give a complete answer to this question.
We begin with a handy observation: if $i=\sqrt{-1}$, then over \mathbb{C} we have the factorization

$$
X^{2}+Y^{2}=(X+i Y)(X-i Y)
$$

Norms of Complex Numbers

We define the norm $N: \mathbb{C} \rightarrow \mathbb{R}$ by

$$
N(a+b i)=(a+b i)(a-b i)=a^{2}+b^{2}
$$

Let $\overline{a+b i}=a-b i$, the complex conjugate of $a+b i$. Then

$$
N(z)=z \bar{z}
$$

for all $z \in \mathbb{C}$.
One can show that $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\overline{z w}$ for all $z, w \in \mathbb{C}$.
It follows that

$$
N(z w)=(z w)(\overline{z w})=(z \bar{z})(w \bar{w})=N(z) N(w)
$$

Thus, for any $a, b, c, d \in \mathbb{Z}$ we have

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & =N(a+b i) N(c+d i) \\
& =N((a+b i)(c+d i)) \\
& =N((a c-b d)+(a d+b c) i) \\
& =(a c-b d)^{2}+(a d+b c)^{2}
\end{aligned}
$$

This proves our first lemma.

Lemma 1

If $m, n \in \mathbb{Z}$ both have the form $X^{2}+Y^{2}$, then so does $m n$.

Thue's Lemma

We now need a result on the size of solutions to linear congruences modulo p.

Lemma 2 (Thue)

Let p be prime and suppose $p \nmid a$. Then the congruence

$$
a X \equiv Y(\bmod p)
$$

has a solution x, y with $0<|x|<\sqrt{p}$ and $0<|y|<\sqrt{p}$.

Proof. We use the pigeonhole principle. Consider the set

$$
S=\{a x-y \mid 0 \leq x, y<\sqrt{p}\} .
$$

The are $(1+[\sqrt{p}])^{2}>(\sqrt{p})^{2}=p$ pairs (x, y) defining the elements of S.

It follows that there exist $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$ with $x_{1}, y_{1}, x_{2}, y_{2} \in[0, \sqrt{p})$ so that
$a x_{1}-y_{1} \equiv a x_{2}-y_{2}(\bmod p) \Leftrightarrow a(\underbrace{x_{1}-x_{2}}_{x}) \equiv \underbrace{y_{1}-y_{2}}_{y}(\bmod p)$.

If $x=0$, then $y=y_{1}-y_{2}$ is divisible by p.

But $\left|y_{1}-y_{2}\right|<\sqrt{p}<p$, so that $y_{1}-y_{2}=0$ as well. This contradicts $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$.

We have the same problem if $y=0$. Thus:

$$
0<|x|,|y|<\sqrt{p},
$$

and we are finished.

Remark. Because it relies on the pigeonhole principle, the proof we have given is nonconstructive.

Examples.

- Suppose $p=3$ and $a=2$. Then $x=-1$ and $y=1$ satisfy $2 x=-2 \equiv 1=y(\bmod 3)$, and $0<|x|,|y|<\sqrt{3}$.
- Suppose $p=5$ and $a=2$. Then $x=1$ and $y=2$ satisfy $2 x \equiv 2 \equiv y(\bmod 5)$, and $0<|x|,|y|<\sqrt{5}$.

We need one more (trivial) lemma.

Lemma 3

If n is odd and represented by $X^{2}+Y^{2}$, then $n \equiv 1(\bmod 4)$.

Proof. If $x \in \mathbb{Z}$, then $x \equiv 0,1,2,3(\bmod 4)$, which implies that $x^{2} \equiv 0,1(\bmod 4)$.

It follows that $x^{2}+y^{2} \equiv 0,1,2(\bmod 4)$ for all $x, y \in \mathbb{Z}$. The result follows.

We are now ready for our first main result.

Primes Represented by $X^{2}+Y^{2}$

Theorem 1

Let p be an odd prime. Then p is represented by $X^{2}+Y^{2}$ if and only if $p \equiv 1(\bmod 4)$.

Proof. The "only if" statement follows from Lemma 3.
So suppose $p \equiv 1(\bmod 4)$.
Then $\left(\frac{-1}{p}\right)=1$, so there is an integer a satisfying $a^{2} \equiv-1$ $(\bmod p)$.

By Thue's lemma, there exist integers $0<|x|,|y|<\sqrt{p}$ so that $a x \equiv y(\bmod p)$.

We then have

$$
-x^{2} \equiv a^{2} x^{2} \equiv y^{2}(\bmod p) \Rightarrow p \mid x^{2}+y^{2}
$$

Write $x^{2}+y^{2}=k p$. Since $x, y \neq 0$ we must have $k \geq 1$. Moreover

$$
k p=x^{2}+y^{2}<p+p=2 p \Rightarrow k<2 .
$$

We conclude that $k=1$ and hence $x^{2}+y^{2}=p$, as claimed.
Remark. One can also show that, up to sign changes and the order of the summands, the expression $p=x^{2}+y^{2}$ is unique.

Integers Represented by $X^{2}+Y^{2}$

We can now prove the following general result.

Theorem 2

Let $n \in \mathbb{N}$ and write $n=N^{2} m$ with m square-free. Then n is represented by $X^{2}+Y^{2}$ if and only if m is not divisible by any prime of the form $4 k+3$.

Proof. First suppose that m is not divisible by any prime of the form $4 k+3$.

Then m can only be divisible by 2 or primes of the form $4 k+1$.
Since $2=1^{2}+1^{2}$, Theorem 1 implies that m is the product of primes represented by $X^{2}+Y^{2}$.

Lemma 1 (and a quick induction) then implies that $m=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$.

Thus

$$
n=N^{2} m=N^{2}\left(x^{2}+y^{2}\right)=(N x)^{2}+(N y)^{2}
$$

as needed.
Now for the converse. Suppose that $n=N^{2} m=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$.

Let $d=(x, y)$ and write $x=r d, y=s d$, with $(r, s)=1$.
Then

$$
n=N^{2} m=d^{2}\left(r^{2}+s^{2}\right)
$$

Because m is square-free, we must have $d \mid N$.

Thus

$$
\left(\frac{N}{d}\right)^{2} m=r^{2}+s^{2}
$$

Let p be any prime dividing m. Then $p \mid r^{2}+s^{2}$.
Since $(r, s)=1$, WLOG we have $p \nmid r$ (i.e. p can't divide both r and s).

Then $r^{-1}(\bmod p)$ exists and we have

$$
s^{2} \equiv-r^{2}(\bmod p) \Rightarrow\left(s r^{-1}\right)^{2} \equiv-1(\bmod p)
$$

which means that $p=2$ or $\left(\frac{-1}{p}\right)=1$ (which implies $p \equiv 1$ $(\bmod 4))$.

This completes the proof.

Recall that in the decomposition $n=N^{2} m$ with m square-free, the primes dividing m are precisely those that divide n with an odd exponent.

We therefore have the following corollary.

Corollary 1

Let $n \in \mathbb{N}$. Then n is represented by $X^{2}+Y^{2}$ if and only if its prime factors of the form $4 k+3$ occur with an even exponent.

Examples.

- Since $860=2^{2} \cdot 5 \cdot 43$, and $43 \equiv 3(\bmod 4), 860$ cannot be represented by $X^{2}+Y^{2}$.
- Since $954=2 \cdot 3^{2} \cdot 53$ and $53 \equiv 1(\bmod 4), 954$ is represented by $X^{2}+Y^{2}$. Indeed, we have $954=15^{2}+27^{2}$.

In the second example, we can find the representation by $X^{2}+Y^{2}$ as follows.
Write $2=1^{2}+1^{2}$ and $53=4+49=2^{2}+7^{2}$.
Then compute

$$
(1+i)(2+7 i)=(2-7)+(7+2) i=-5+9 i
$$

and take the norm to obtain

$$
2 \cdot 53=5^{2}+9^{2}
$$

Finally multiply by 3^{2} to get

$$
954=2 \cdot 3^{2} \cdot 53=3^{2}\left(5^{2}+9^{2}\right)=15^{2}+27^{2} .
$$

Representation by $X^{2}+n Y^{2}$

The question of representation of integers by $X^{2}+n Y^{2}$ has been studied extensively.

For example, an odd prime p has the form $X^{2}+27 Y^{2}$ iff $p \equiv 1$ $(\bmod 3)$ and 2 is a cubic residue of p.

More generally we have:

Theorem 3

Let $n \in \mathbb{N}$ be squarefree, $n \not \equiv 3(\bmod 4)$. There is a monic irreducible polynomial $f_{n}(X) \in \mathbb{Z}[X]$ such that if an odd prime p divides neither n nor the discriminant of f_{n}, then $p=x^{2}+n y^{2}$ iff

$$
\left(\frac{-n}{p}\right)=1 \text { and } f_{n}(X) \equiv 0(\bmod p) \text { has a solution. }
$$

$X^{2}+Y^{2}+Z^{2}$

The question of representability of integers as sums of three squares has also been settled.

Theorem 4

A natural number has the form $X^{2}+Y^{2}+Z^{2}$ iff it is not of the form $4^{n}(8 m+7)$.

Proof. We will prove that integers of the form $4^{n}(8 m+7)$ cannot be represented by $X^{2}+Y^{2}+Z^{2}$. The converse is too difficult to include here.

We induct on $n \geq 0$. Suppose $n=0$. For any integer x we have $x^{2} \equiv 0,1,4(\bmod 8)$. Thus

$$
x^{2}+y^{2}+z^{2} \equiv 0,1,2,3,4,5,6(\bmod 8)
$$

In particular, $x^{2}+y^{2}+z^{2} \not \equiv 7(\bmod 8)$, so that we cannot represent $8 m+7=4^{0}(8 m+7)$ as the sum of three squares.

Now let $n \geq 1$ and suppose no integer of the form $4^{n-1}(8 m+7)$ also has the form $X^{2}+Y^{2}+Z^{2}$.

Assume $4^{n}(8 m+7)=x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$.
Then $x^{2}+y^{2}+z^{2} \equiv 0(\bmod 4)$. Since every square is either 0 or 1 modulo 4 , this can only happen if $x \equiv y \equiv z \equiv 0(\bmod 2)$.

Write $x=2 a, y=2 b$ and $z=2 c$. Then

$$
4^{n}(8 m+7)=x^{2}+y^{2}+z^{2} \Rightarrow 4^{n-1}(8 m+7)=a^{2}+b^{2}+c^{2}
$$

which contradicts our inductive hypothesis. Hence $4^{n}(8 m+7)$ is not the sum of three squares, which finishes the induction.

Examples.

- Since $299 \equiv 3(\bmod 8)$, Theorem 4 guarantees that 299 is the sum of three squares. Indeed, $299=7^{2}+9^{2}+13^{2}$.
- Since $368=16 \cdot 23$ and $23 \equiv 7(\bmod 8), 368$ cannot be expressed as the sum of three squares.

