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Introduction

We have completely classified the natural numbers that can be
written as sums of two or three squares.

What about sums of four squares?

It turns out that the quadratic form

Q(X ,Y ,Z ,W ) = X 2 + Y 2 + Z 2 +W 2

is universal, i.e. it represents every natural number.

This is Lagrange’s four squares theorem, which we will prove today.
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Sums of Four Squares

The representability of integers as sums of four squares relies on
the following lemma.

Lemma 1 (Euler)

If m, n ∈ N are both sums of four squares, then so is mn.

Rather than simply cite a mysterious identity, let’s put this result
in context.

We define the Hamiltonian quaternions to be the 4-dimensional
real vector space

H = {a + bi + cj + dk | a, b, c , d ∈ R}.
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Quaternions can be added together coordinate-wise, and multiplied
together by appealing to the rules

i2 = j2 = k2 = ijk = −1.

These give us

ij = − (ij)k2 = − (ijk)k = k , jk = − i2jk = − i(ijk) = i ,

ki = − ki(j2) = − k(ij)j = − k2j = j ,

ji = − j(k2)i = − (jk)(ki) = − ij ,

kj = − k(i2)j = − (ki)(ij) = − jk ,

ik = − i(j2)k = − (ij)(jk) = − ki ,

so that i , j and k are anti-commutative.
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Remarks

The relationships ij = k , jk = i , ki = j , ij = −ji , kj = −jk
and ik = −ik are precisely the relationships satisfied by the
unit vectors i , j and k in R

3 under the cross product!

The map

a + bi + cj + dk 7→







a −b −c −d
b a −d c
c d a −b
d −c b a







embeds H into the ring M4×4(R).

This yields a concrete representation of H as a ring of real
4× 4 matrices.
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Norms of Quaternions

Given z ∈ H, write z = a + v, where v = xi + yj + zk ∈ R
3.

Suppose w = b + u ∈ H. Then it is not hard to show that

zw = (ab − u · v) + au+ bv + v × u,

the final product being the cross product in R
3.

In particular

N(z) = (a + v)(a − v) = (a2 + v · v) + av − av− v × v

= a2 + |v|2 = a2 + x2 + y2 + z2.
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Given z = a + v ∈ H, define z∗ = a− v.

Then N(z) = zz∗.

Write z = a+ v and w = b + u. Then

w∗z∗ = (b − u)(a − v) = (ab − u · v)− au− bv+ u× v

= (ab − u · v)− au− bv− v × u

= ((a + v)(b + u))∗ = (zw)∗.

Hence

N(zw) = (zw)(zw)∗ = (zw)(w∗z∗)

= zN(w)z∗ = zz∗N(w) = N(z)N(w),

since N(w) ∈ R commutes with all of H.
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Quaternions and Euler’s Lemma

Because N(a + bi + cj + dk) = a2 + b2 + c2 + d2, we obtain:

Lemma 2 (Euler)

If m, n ∈ N can be written as the sum of four squares, then so can
mn.

Explicitly, if m = a21 + a22 + a23 + a24 = N(a1 + a2i + a3j + a4k
︸ ︷︷ ︸

z

)and

n = b21 + b22 + b23 + b24 = N(b1 + b2i + b3j + b4k
︸ ︷︷ ︸

w

), then

mn = N(z)N(w) = N(zw) = (a1b1 − a2b2 − a3b3 − a4b4)
2

+ (a1b2 + a2b1 + a3b4 − a4b3)
2 + (a1b3 − a2b4 + a3b1 + a4b2)

2

+ (a1b4 + a2b3 − a3b2 + a4b1)
2.
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Sums of Squares in Z/pZ

We now need another lemma.

Lemma 3

Let p be a prime. For all a ∈ Z, there exist x , y ∈ Z so that

x2 + y2 ≡ a (mod p).

Proof. If a ≡ 0 (mod p) or

(
a

p

)

= 1, we are finished.

So we may assume that

(
a

p

)

= −1.

Suppose, for the sake of contradiction, that x2 + y2 ≡ a (mod p)
has no solution.
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Suppose

(
b

p

)

= −1. Then

(
ab

p

)

= (−1)(−1) = 1,so that

ab ≡ z2 (mod p), for some z ∈ Z.

If x2 + y2 ≡ b (mod p), then (ax)2 + (ay)2 ≡ a2b ≡ z2a (mod p).

Multiplying by z−2 (mod p), we obtain (axz−1)2 + (ayz−1)2 ≡ a
(mod p), contrary to our assumption on a.

We conclude that if

(
b

p

)

= −1, then x2 + y2 ≡ b (mod p) has

no solution.

This means that x2 + y2 ≡ z2 (mod p) for all integers x and y .
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This shows that the set of squares in Z/pZ is closed under
addition.

Thus
a ≡ 12 + 12 + · · ·+ 12

︸ ︷︷ ︸

a times

≡ z2 (mod p),

which is a contradiction.

Therefore x2 + y2 ≡ a (mod p) must have a solution when
(
a

p

)

= −1, which completes the proof.

Remark. Lemma 3 still holds (with essentially the same proof) if
we replace Z/pZ by any finite field.
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Now let p be an odd prime. Taking a = −1 in Lemma 3, we obtain
x , y ∈ Z so that

x2 + y2 + 1 ≡ 0 (mod p).

We can assume 0 ≤ x , y ≤ p − 1. Replacing x and y by p − x and
p − y , if necessary, we can arrange it so that x , y < p/2.

We then have

0 < kp = x2 + y2 + 1 <
(p

2

)2

+
(p

2

)2

+ 1 =
p2

2
+ 1 < p2,

which implies that k < p.
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Thus:

Lemma 4

Let p be an odd prime. Then there exists a positive integer k < p
so that kp is the sum of four squares.

Proof. Indeed, our work above shows that

kp = x2 + y2 + 12 + 02.

We are now ready to establish the next important result.

Theorem 1

Every prime can be expressed as the sum of four squares (some of
which may be 0).
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Proof

Let p be a prime. Since 2 = 12 +12 +02 +02, we may assume p is
odd.

According to Lemma 4, there is a positive k < p so that kp is the
sum of four squares.

The Well Ordering Principle implies that there is a least such k .
We claim that, in fact, k = 1.

Write kp = x2 + y2 + z2 + w2 and assume that k > 1.

If k is even we obtain 0 ≡ x2 + y2 + z2 + w2 ≡ x + y + z + w
(mod 2), by Fermat’s theorem.

It follows that among x , y , z ,w , an even number of them must be
odd.
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This implies that we can reorder x , y , z and w so that

x ≡ y (mod 2) and z ≡ w (mod 2).

Then
x + y

2
,
x − y

2
,
z + w

2
,
z − w

2

are all integers, and

(
x + y

2

)2

+

(
x − y

2

)2

+

(
z + w

2

)2

+

(
z − w

2

)2

=
x2 + y2 + z2 + w2

2
=

(
k

2

)

p,

which contradicts the minimality of k .
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Therefore we must have that k is odd and at least 3.

Choose a, b, c , d ∈ Z so that

a ≡ x (mod k), b ≡ y (mod k), c ≡ z (mod k), d ≡ w (mod k),

with |a|, |b|, |c |, |d | < k/2.

Then

a2 + b2 + c2 + d2 ≡ x2 + y2 + z2 + w2 ≡ 0 (mod k),

so that a2 + b2 + c2 + d2 = nk for some n ≥ 0.

Note that

0 ≤ nk = a2 + b2 + c2 + d2 < 4

(
k

2

)2

= k2 ⇒ n < k .
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If n = 0, then a = b = c = d = 0, and x ≡ y ≡ z ≡ w ≡ 0
(mod k), which implies

k2|x2 + y2 + z2 + w2 = kp ⇒ k |p ⇒ k = 1,

since k < p. But k > 1 so this cannot be.

We conlclude that 0 < n < k .

Thus

k2np = (nk)(kp) = (a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2)

= r2 + s2 + t2 + u2,

where r , s, t, u are as described above.
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Specifically,
r = ax + by + cz + dw ,

s = ay − bx − cw + dz ,

t = az + bw − cx − dy ,

u = aw − bz + cy − dx .

Here we have replaced b, c , d with −b,−c ,−d , which is
permissible since each of these quantities is squared.

Notice that

r ≡ a2 + b2 + c2 + d2 ≡ 0 (mod k),

s ≡ ab − ab − cd + cd ≡ 0 (mod k),

t ≡ ac + bd − ac − bd ≡ 0 (mod k),

u ≡ ad − bc + bc − ad ≡ 0 (mod k).
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Thus we can divide our earlier equality by k2 to obtain

np =
( r

k

)2

+
( s

k

)2

+
( t

k

)2

+
(u

k

)2

,

with 0 < n < k .

This contradicts the minimality of k , and the proof is
complete.

Remark. The proof we have given is nonconstructive: it
guarantees the existence of a representation as a sum of four
squares, but gives no indication of how to actually find it.
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Lagrange’s Four Squares Theorem

As a corollary we now deduce:

Theorem 2 (Lagrange)

Every natural number can be written as the sum of four squares
(some of which may be 0).

Proof. Let n ∈ N. Since 1 = 12 + 02 + 02 + 02, we may assume
n > 1.

Then n is a product of primes, each of which can be written as the
sum of four squares, by the preceding theorem.

By Euler’s lemma (and a quick induction) this implies that n is a
sum of four squares.
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Example

Because Euler’s lemma is constructive, the proof of Lagrange’s
theorem is also constructive, up to expressing each prime as a sum
of four squares.

Consider the integer 564 = 22 · 3 · 47.

We have

3 = 12 + 12 + 12 + 02, 47 = 62 + 32 + 12 + 12.

Let z = 1 + i + j and w = 6 + 3i + j + k . Then

zw = (6− 3− 1) + (3 + 6 + 1)i + (1 + 6 +−1)j + (1 + 1− 3)k

= 2 + 10i + 6j − k .
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Thus
564 = 22 · 3 · 47 = 22N(z)N(w)

= 22N(zw) = 22(22 + 102 + 62 + 12)

= 42 + 202 + 122 + 22 .

Remarks.

Given k ≥ 2, Waring’s problem asks for the least g(k) so that every
natural number can be expressed as the sum of g(k) kth powers.

Our work on sums of squares proves that g(2) = 4.

It is known that g(3) = 9, g(4) = 19, g(5) = 37, and that

g(k) = [(3/2)k ] + 2k − 2

for k ≥ 6, with at most finitely many exceptions.
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