Base b Expansions of Rational Numbers

Ryan C. Daileda

Trinity University

Number Theory

Introduction

As a prelude to a discussion of continued fractions, we consider base b expansions of real numbers.

We will start with the likely familiar fact that every real number possesses a base b expansion

We will then characterize the expansions of rational numbers as those that are eventually periodic, providing an explicit number-theoretic interpretation of the minimal period.

Base b Expansions of Real Numbers

Although likely a "familiar" fact, our first goal is to prove the following fact.

Theorem 1

Let $b \geq 2$ be an integer. For each $x \in[0,1)$ there exists a sequence $\left\{d_{i}\right\}_{i \geq 1}$ in $\{0,1,2, \ldots, b-1\}$ so that

$$
x=\sum_{i=1}^{\infty} \frac{d_{i}}{b^{i}} .
$$

Proof. Let $x \in[0,1)$, and for each $k \in \mathbb{N}_{0}$ let $n_{k}=\left[b^{k} x\right]$, so that

$$
n_{k} \leq b^{k} x<n_{k}+1
$$

If we subtract the $k+1$ st inequality from b times the k th we obtain $b n_{k}-\left(n_{k+1}+1\right)<0<b n_{k}+b-n_{k+1} \Rightarrow-1<n_{k+1}-b n_{k}<b$.

Thus $d_{k+1}=n_{k+1}-b n_{k} \in\{0,1,2, \ldots, b-1\}$.
We claim that $\frac{n_{k}}{b^{k}}=\sum_{i=1}^{k} \frac{d_{i}}{b^{i}}$. We proceed by induction on k.
We have $d_{1}=n_{1}-b n_{0}=n_{1}$, so that $\frac{n_{1}}{b}=\frac{d_{1}}{b}$, which proves the $k=1$ case.

Now suppose the result is true for some $k \geq 1$. Then

$$
\begin{aligned}
\frac{n_{k+1}}{b^{k+1}} & =\frac{d_{k+1}}{b^{k+1}}+\frac{b n_{k}}{b^{k+1}}=\frac{d_{k+1}}{b^{k+1}}+\frac{n_{k}}{b^{k}} \\
& =\frac{d_{k+1}}{b^{k+1}}+\sum_{i=1}^{k} \frac{d_{i}}{b^{i}}=\sum_{i=1}^{k+1} \frac{d_{i}}{b^{i}}
\end{aligned}
$$

by the inductive hypothesis. This establishes the result for $k+1$, and completes the proof of the claim.

The series $\sum_{i=1}^{\infty} \frac{d_{i}}{b^{i}}$ converges by the comparison test, and we've just shown that its k th partial sum is n_{k} / b^{k}, which satisfies

$$
0 \leq x-\frac{n_{k}}{b^{k}}<\frac{1}{b^{k}} .
$$

The squeeze theorem then implies that

$$
x=\lim _{k \rightarrow \infty} \frac{n_{k}}{b^{k}}=\sum_{i=1}^{\infty} \frac{d_{i}}{b^{i}}
$$

Remark. Note that our proof gives the formula $d_{k}=\left[b^{k} x\right]-b\left[b^{k-1} x\right]$ for computing the "digits" of the base b expansion of $x \in[0,1)$.

Now let $x \in \mathbb{R}_{0}^{+}$be arbitrary. We can write $x=[x]+(x-[x])$ with $x-[x] \in[0,1)$ and $[x] \in \mathbb{N}_{0}$.

Since every member of \mathbb{N}_{0} has a base b expansion (in nonnegative powers of b), Theorem 2 implies that

$$
x=\sum_{i=0}^{n} d_{i}^{\prime} b^{i}+\sum_{i=1}^{\infty} \frac{d_{i}}{b^{i}}=\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot d_{1} d_{2} d_{3} \cdots\right]_{b}
$$

for some $n \in \mathbb{N}_{0}$ and $d_{i}, d_{i}^{\prime} \in\{0,1,2 \ldots, b-1\}$.

Remark. The base b expansion of $x<0$ is obtained by negating the base b expansion of $-x>0$.

Eventually Periodic Base b Expansions

We say that a base b expansion

$$
\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot d_{1} d_{2} d_{3} \cdots\right]_{b}
$$

is eventually periodic if there is an $\ell \in \mathbb{N}$ so that $d_{i+\ell}=d_{i}$ for all sufficiently large i.
This means that we have

$$
\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot d_{1} d_{2} d_{3} \cdots\right]_{b}=\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot a_{1} a_{2} \cdots a_{k} \overline{c_{1} c_{2} \cdots c_{\ell}}\right]_{b},
$$

the bar indicating that the string of "digits" $c_{1}, c_{2}, \ldots, c_{\ell}$ is repeated indefinitely.
We say that this expansion is purely periodic if $k=0$, i.e.

$$
\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot d_{1} d_{2} d_{3} \cdots\right]_{b}=\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot \overline{c_{1} c_{2} \cdots c_{\ell}}\right]_{b} .
$$

Our first goal is to classify the nonnegative real numbers with purely periodic base b expansions.

If $x \in \mathbb{R}_{0}^{+}$has a purely periodic expansion, then

$$
\begin{aligned}
x & =\left[d_{n}^{\prime} d_{n-1}^{\prime} \cdots d_{0}^{\prime} \cdot \overline{c_{1} c_{2} \cdots c_{\ell}}\right]_{b}=n+\sum_{j=0}^{\infty} \sum_{i=1}^{\ell} \frac{c_{i}}{b^{j \ell+i}} \\
& =n+\sum_{i=1}^{\ell} \sum_{j=0}^{\infty} \frac{c_{i}}{b^{j \ell+i}}=n+\sum_{i=1}^{\ell} \frac{c_{i}}{b^{i}} \sum_{j=0}^{\infty} \frac{1}{b^{j \ell}} \\
& =n+\frac{1}{1-b^{-\ell}} \sum_{i=1}^{\ell} \frac{c_{i}}{b^{i}}=n+\frac{b^{\ell}}{b^{\ell}-1} \sum_{i=1}^{\ell} \frac{c_{i}}{b^{i}} \in \mathbb{Q} .
\end{aligned}
$$

Write $x=r / s$ with $r, s \in \mathbb{N}$ and $(r, s)=1$. Multiplying the previous equality by $\left(b^{\ell}-1\right) s$ we find that
$\left(b^{\ell}-1\right) r=\left(b^{\ell}-1\right) s n+b^{\ell} s \sum_{i=1}^{\ell} \frac{c_{i}}{b^{i}}=s\left(\left(b^{\ell}-1\right) n+\sum_{i=1}^{\ell} c_{i} b^{\ell-i}\right)$.

The quantity on the RHS in parentheses is an integer, so we conclude that $s \mid\left(b^{\ell}-1\right) r$.

Since $(r, s)=1$, Euclid's lemma tells us that $s \mid b^{\ell}-1$ or $b^{\ell} \equiv 1$ $(\bmod s)$.

This implies that $(b, s)=1$ (why?) and that the (multiplicative) order $|b|$ of b modulo s divides ℓ.

To summarize:

Lemma 1

If $(r, s)=1$ and the base b expansion of r / s is purely periodic with period ℓ, then $(b, s)=1$ and $m \mid \ell$, where m is the multiplicative order of b modulo s.

We will now show that if $(r, s)=(b, s)=1$, then r / s has a purely periodic base b expansion with period equal to the multiplicative order of b modulo s.

Together with Lemma 1 proves that the minimal period of the base b expansion of r / s is precisely the multiplicative order of b modulo s.

So suppose $(r, s)=(b, s)=1$ and let m be the multiplicative order of b modulo s.

Write $b^{m}-1=n s$ and $n r=q\left(b^{m}-1\right)+t$ with $0 \leq t<b^{m}-1$.
Then

$$
\begin{aligned}
\frac{r}{s} & =\frac{n r}{n s}=\frac{q\left(b^{m}-1\right)+t}{b^{m}-1}=q+\frac{t}{b^{m}-1} \\
& =q+\frac{t}{b^{m}} \frac{1}{1-b^{-m}}=q+\frac{1}{b^{m}}\left(\sum_{i=0}^{m-1} d_{i} b^{i}\right)\left(\sum_{j=0}^{\infty} \frac{1}{b^{j m}}\right) \\
& =q+\left(\sum_{i=1}^{m} \frac{d_{m-i}}{b^{i}}\right)\left(\sum_{j=0}^{\infty} \frac{1}{b^{j m}}\right)=q+\sum_{j=0}^{\infty} \sum_{i=1}^{m} \frac{d_{m-i}}{b^{j m+i}} \\
& =\left[q \cdot \frac{d_{m-1} d_{m-2} \cdots d_{0}}{b} .\right.
\end{aligned}
$$

Characterization of Purely Periodic Expansions

Thus:

Theorem 2

Suppose $(r, s)=1$. The base b expansion of r / s is purely periodic with minimal period m if and only if $(b, s)=1$ and m is the multiplicative order of b modulo s.

Example 1

Verify Theorem 2 for the fraction $2 / 13$ in base 10 .
Solution. Long division yields

$$
\frac{2}{13}=0 . \overline{153846}
$$

which is purely periodic with minimal period equal to 6 .

We have $\varphi(13)=12=2^{2} \cdot 3$, so the only possible orders of 10 modulo 13 are $2,3,4,6,12$.

We find that

$$
\begin{aligned}
& 10^{2} \equiv 9(\bmod 13), 10^{3} \equiv-1(\bmod 13) \\
& 10^{4} \equiv 3(\bmod 13), 10^{6} \equiv 1(\bmod 13)
\end{aligned}
$$

showing that the order of 10 modulo 13 is indeed 6 .

Example 2

Verify Theorem 2 for the purely periodic expansion $3 . \overline{11112}$.

Solution. Let $x=0 . \overline{11112}$. Then $10^{5} x=11112+x$.

Thus

$$
x=\frac{11112}{10^{5}-1}=\frac{11112}{99999}=\frac{3704}{33333} .
$$

Therefore

$$
3 . \overline{11112}=3+x=3+\frac{3704}{33333}=\frac{103703}{33333}
$$

and its easy to see that 10 has order 5 modulo 33333.

We can now easily deal with eventually periodic base b expansions.

p-adic Valuations

Given a prime p and $n \in \mathbb{N}$, let $\nu_{p}(n) \in \mathbb{N}_{0}$ denote the exact power of p dividing n.
So, for example, since $12=2^{2} \cdot 3$,

$$
\nu_{2}(12)=2, \quad \nu_{3}(12)=1, \quad \nu_{5}(12)=0, \quad \nu_{7}(12)=0, \ldots
$$

That is, $n=p^{\nu_{p}(n)} m$ with $(m, p)=1$, and

$$
n=\prod_{p} p^{\nu_{p}(n)}
$$

the product extending over all primes p (the product is actually finite since $\nu_{p}(n) \neq 0$ only for those primes p occurring in the canonical form of n).

Given a base b and $s \in \mathbb{N}$, write

$$
s=\underbrace{\prod_{p \nmid b} p^{\nu_{p}(s)}}_{s^{\prime}} \underbrace{\prod_{p \mid b} p^{\nu_{p}(s)}}_{s^{\prime \prime}}
$$

so that $\left(b, s^{\prime}\right)=1$.
Choose n so that $\nu_{p}\left(b^{n}\right)=n \nu_{p}(b) \geq \nu_{p}(s)$ for all $p \mid b$.
Then $s^{\prime \prime}=\prod_{p \mid b} p^{\nu_{p}(s)}$ divides $b^{n}: b^{n}=s^{\prime \prime} r^{\prime}$.
Thus

$$
\frac{b^{n} r}{s}=\frac{s^{\prime \prime} r^{\prime} r}{s^{\prime} s^{\prime \prime}}=\frac{r^{\prime} r}{s^{\prime}}=\left[a_{k} a_{k-1} \cdots a_{0} \cdot \overline{d_{1} d_{2} \cdots d_{m}}\right]_{b},
$$

with minimal period m equal to the multiplicative order of b modulo s^{\prime}, by Theorem 2.

Since multiplication by b^{-n} shifts the "decimal" point to the left by n "digits", we find that r / s has an eventually periodic base b expansion.

Conversely, if r / s (with $(r, s)=1$) has an eventually periodic base b expansion of minimal period m, then for an appropriate $n \in \mathbb{N}$, $b^{n} r / s$ is purely periodic.

Let $d=\left(b^{n}, s\right)$ and write $b^{n}=d r^{\prime}$ and $s=d s^{\prime}$ with $\left(r^{\prime}, s^{\prime}\right)=1$.

Then $b^{n} r / s=r r^{\prime} / s^{\prime}$, with $\left(r r^{\prime}, s^{\prime}\right)=1$. Theorem 2 then implies that $\left(b, s^{\prime}\right)=1$ and that m is the multiplicative order of b modulo s^{\prime}.

Eventually Periodic Base b Expansions

Finally, since $s^{\prime}=s /\left(b^{n}, s\right)$ is relatively prime to b, one can show that

$$
s^{\prime}=\prod_{p \nmid b} p^{\nu_{p}(s)}
$$

as above (HW). This proves our characterization of eventually periodic base b expansions.

Theorem 3

Suppose that $(r, s)=1$. Then r / s has an eventually periodic base b expansion of minimal period m if and only if m is the multiplicative order of b modulo

$$
s^{\prime}=\prod_{p \nmid b} p^{\nu_{p}(s)}
$$

Examples

Remark. Note that $(s, b)=1$ if and only if $s^{\prime}=s$, so Theorem 3 includes Theorem 2 as a corollary.

Example 3

Verify Theorem 3 for the fraction 791/1850 in base 10.

Solution. Long division yields

$$
\frac{791}{1850}=0.42 \overline{756}
$$

which is eventually periodic with minimal period 3 .

We have

$$
s=\underbrace{2 \cdot 5^{2}}_{s^{\prime \prime}} \cdot \underbrace{37}_{s^{\prime}},
$$

and

$$
10^{2} \equiv 26(\bmod 37), \quad 10^{3} \equiv 1(\bmod 37)
$$

so that 10 has order 3 modulo 37, in accordance with Theorem 3.

Example 4

Verify Theorem 3 for the base 6 expansion $[12.134 \overline{45}]_{6}$.

Solution. Let $x=[\cdot \overline{45}]_{6}$. Then $6^{2} x=4 \cdot 6+5+x=29+x$.

Thus

$$
x=\frac{29}{6^{2}-1}=\frac{29}{35}
$$

Hence

$$
[12.134 \overline{45}]_{6}=6^{1}+2 \cdot 6^{0}+\frac{1}{6}+\frac{3}{6^{2}}+\frac{4}{6^{3}}+\frac{x}{6^{3}}=\frac{62539}{7560} .
$$

Since $7560=6^{3} \cdot 35$, we have $s^{\prime}=35$ and clearly 6 has order 2 modulo 35 .

