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Introduction

As a prelude to a discussion of continued fractions, we consider
base b expansions of real numbers.

We will start with the likely familiar fact that every real number
possesses a base b expansion

We will then characterize the expansions of rational numbers as
those that are eventually periodic, providing an explicit
number-theoretic interpretation of the minimal period.
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Base b Expansions of Real Numbers

Although likely a “familiar” fact, our first goal is to prove the
following fact.

Let b > 2 be an integer. For each x € [0,1) there exists a
sequence {d;}i>1 in {0,1,2,...,b— 1} so that

Proof. Let x € [0,1), and for each k € Ng let n, = [b¥x], so that
nkgbkx<nk+1.

If we subtract the k + 1st inequality from b times the kth we obtain

bnk—(nk+1—|—1) <0< bng+b—ngr1 = —1< ngy1—bne <b.
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Thus dixr1 = ngy1 — bne € {0,1,2,...,b—1}.

d.
We claim that % = b—: We proceed by induction on k.
i=1

d
We have di = n; — bng = n1, so that n_; = ?1 which proves the
k =1 case.

Now suppose the result is true for some k > 1. Then
M1 dipr | b digr | e
pk+1 = pk+1 pk+1 = pk+1 bk

k+1

d a d; d;
Sty = Ly

by the inductive hypothesis. This establishes the result for k + 1,
and completes the proof of the claim.
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(o]
. di . .
The series Z b_: converges by the comparison test, and we've just
i=1
shown that its kth partial sum is nk/bk, which satisfies
Ny 1

The squeeze theorem then implies that

Remark. Note that our proof gives the formula
dy = [b¥x] — b[b*~!x] for computing the “digits" of the base b
expansion of x € [0,1).
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Now let x € R be arbitrary. We can write x = [x] + (x — [x])
with x — [x] € [0,1) and [x] € No.

Since every member of Ny has a base b expansion (in nonnegative
powers of b), Theorem 2 implies that

X = Zd,-’b’JrZ% =[d}d}_1 - dy.didbdz---]p
i=0 i=1
for some n € Ng and d;,d/ € {0,1,2...,b—1}.

Remark. The base b expansion of x < 0 is obtained by negating
the base b expansion of —x > 0.
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Eventually Periodic Base b Expansions

We say that a base b expansion
[did)_1---dy.didads---]p

is eventually periodic if there is an ¢ € N so that d;;, = d; for all
sufficiently large /.
This means that we have

[d,/7 ,,,_1~~~d6.d1d2d3"']b = [d,/7 ,’,_1--~d(’).ala2~--akc1(:2-~-(:g]b,

the bar indicating that the string of “digits” ¢, ¢, ..., ¢ is
repeated indefinitely.
We say that this expansion is purely periodic if k =0, i.e.

[d,,7 ,/,_1 cee dé.d1d2d3 . ’]b = [d,,7 ,/,_1 cee dé.C1C2 e Cg]b.
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Our first goal is to classify the nonnegative real numbers with
purely periodic base b expansions.

If x € RSF has a purely periodic expansion, then

Jj=0 i=1
B { oo G 1 ¢ 00 1
APl R DD B
i=1 j=0 i=1 Jj=0
l ¢
1 G bt G
_n+1—b—‘5;b' TH-124b Q
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Write x = r/s with r,s € N and (r,s) = 1. Multiplying the
previous equality by (b® — 1)s we find that

¢ ¢
(bg —1)r= (b(Z —1)sn+ besZ% =s ((bf —n+ Zcibe—i) '
i=1 i=1

The quantity on the RHS in parentheses is an integer, so we
conclude that s|(b* — 1)r.

Since (r,s) = 1, Euclid's lemma tells us that s|b’ — 1 or b’ =1
(mod s).

This implies that (b, s) = 1 (why?) and that the (multiplicative)
order |b| of b modulo s divides /.
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To summarize:

If (r,s) =1 and the base b expansion of r/s is purely periodic with
period ¢, then (b,s) = 1 and m|¢, where m is the multiplicative
order of b modulo s.

We will now show that if (r,s) = (b,s) = 1, then r/s has a purely
periodic base b expansion with period equal to the multiplicative
order of b modulo s.

Together with Lemma 1 proves that the minimal period of the base

b expansion of r/s is precisely the multiplicative order of b modulo
s.

Daileda Base b Expansions



So suppose (r,s) = (b,s) =1 and let m be the multiplicative
order of b modulo s.

Write b™ —1 = ns and nr = q(b™ — 1)+t with0 <t < b™ — 1.

Then
rnr_q"-1)+t t
s ns bm —1 _q+b’"—1
m—1 00
; , 1
_q+b_’"m_q+b_m<i:0d'b> 25

= [q.dm—1dm—2 - do], -
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Characterization of Purely Periodic Expansions

Thus:

Suppose (r,s) = 1. The base b expansion of r/s is purely periodic
with minimal period m if and only if (b,s) =1 and m is the
multiplicative order of b modulo s.

Verify Theorem 2 for the fraction 2/13 in base 10.

Solution. Long division yields

2
< —0.15384
T3 = 0153846,

which is purely periodic with minimal period equal to 6.
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We have ¢(13) = 12 = 22 . 3, so the only possible orders of 10
modulo 13 are 2, 3, 4, 6, 12.

We find that

102 =9 (mod 13),10° = —1 (mod 13),
10* = 3 (mod 13),10° = 1 (mod 13),

showing that the order of 10 modulo 13 is indeed 6. U

Verify Theorem 2 for the purely periodic expansion 3.11112.

Solution. Let x = 0.11112. Then 10°x = 11112 + x.
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Thus
_ 11112 11112 3704
© 105 -1 99999  33333°
Therefore
— 3704 103703
3.11112 =3 +x =3+ 33333~ 33333
and its easy to see that 10 has order 5 modulo 33333. ]

We can now easily deal with eventually periodic base b expansions.
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p-adic Valuations

Given a prime p and n € N, let v,(n) € Ny denote the exact power
of p dividing n.

So, for example, since 12 =22 -3,

1(12) =2, 13(12) =1, vs(12) =0, 17(12) =0,...

That is, n = p»("m with (m, p) = 1, and
n = H pVP(n)’
P

the product extending over all primes p (the product is actually
finite since vp(n) # 0 only for those primes p occurring in the
canonical form of n).
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Given a base b and s € N, write

s = H pr(s) H pr(5)7
ptb

plb
—_——— ——

so that (b,s’) = 1.
Choose n so that vp(b") = nvp(b) > vp(s) for all p|b.
Then s” = Hp””(s) divides b™: b" = s"r’.

plb

Thus

b"r  Ss"f'r  fr -

b’

with minimal period m equal to the multiplicative order of b
modulo s’, by Theorem 2.
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Since multiplication by b™" shifts the "decimal” point to the left
by n “digits”, we find that r/s has an eventually periodic base b
expansion.

Conversely, if r/s (with (r,s) = 1) has an eventually periodic base
b expansion of minimal period m, then for an appropriate n € N,
b"r/s is purely periodic.

Let d = (b",s) and write b" = dr’ and s = ds’ with (r/,s') = 1.

Then b"r/s = rr'/s', with (rr’,s’) = 1. Theorem 2 then implies
that (b,s’) = 1 and that m is the multiplicative order of b modulo

s’
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Eventually Periodic Base b Expansions

Finally, since s’ = s/(b", s) is relatively prime to b, one can show
that
S, — prp(s)’
ptb

as above (HW). This proves our characterization of eventually
periodic base b expansions.

Theorem 3

Suppose that (r,s) = 1. Then r/s has an eventually periodic base
b expansion of minimal period m if and only if m is the
multiplicative order of b modulo

SI — H pVP(s).
plb
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SETES

Remark. Note that (s, b) =1 if and only if s’ = s, so Theorem 3
includes Theorem 2 as a corollary.

Verify Theorem 3 for the fraction 791/1850 in base 10.

Solution. Long division yields

791 —
— =0.42
1850 0.42756,

which is eventually periodic with minimal period 3.
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We have
s=2-5%. 37,
—— =~
S” s/
and
102 = 26 (mod 37), 10° =1 (mod 37),

so that 10 has order 3 modulo 37, in accordance with Theorem

Example 4
Verify Theorem 3 for the base 6 expansion [12.13445]e.

Solution. Let x = [45]g. Then 6°x =4-6 +5+ x = 29 + x.
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Thus
29 29

X=—-

62—1 35

Hence

_ 1 3 4 x 62539
12.13445]¢ =6 +2- 60 + = + — + — + =
[ Jo + teTe T e T e 560

Since 7560 = 63 - 35, we have s’ = 35 and clearly 6 has order 2
modulo 35. ]
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