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Introduction

For us, the theory of continued fractions begins with a
reinterpretation of the quotients occurring in the EA.

This will lead to the finite continued fraction representations of
rational numbers.

We will eventually show that general (infinite) continued fractions
can also be used to represent arbitrary real numbers, and contain
useful arithmetic information.
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The EA Revisited

Let x = r/s ∈ Q with r , s ∈ Z and (r , s) = 1. The EA yields the
sequence of divisions

r = q1s + r1 ⇒
r

s
= q1 +

r1
s
,

s = q2r1 + r2 ⇒
s

r1
= q2 +

r2
r1
,

r1 = q3r2 + r3 ⇒
r1
r2

= q3 +
r3
r2
,

...

rn−1 = qn+1rn ⇒
rn−1

rn
= qn+1,

in which the remainders satisfy

|s| > r1 > r2 > r3 > · · · > rn = (r , s) = 1.
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Repeated back substitution yields
r

s
= q1 +

r1
s

= q1 +
1

q2 +
r2

r1

= q1 +
1

q2 +
1

q3 +
r3

r2

...

= q1 +
1

q2 +
1

q3 +
1

q4 +
1

. . .

qn +
1

qn+1

Daileda Finite Continued Fractions



Finite Continued Fractions

An expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

an−1 +
1

an

is called a finite (simple) continued fraction, and we denote it by

[a0; a1, a2, . . . , an].

We will assume that a0 ∈ R and ai ∈ R+ for i ≥ 1 (usually in Z).
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Rationals as Continued Fractions

Our work above proves:

Theorem 1

Let r/s ∈ Q with (r , s) = 1. If q1, q2, . . . , qn+1 are the quotients
appearing the the EA applied to (r , s), then

r

s
= [q1; q2, q3, . . . , qn+1].

In particular, every rational number can be represented as a finite
simple continued fraction.

Example 1

Express 39
14

as a continued fraction.
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Solution. We implement the EA and keep track of the quotients:

39 = 2 · 14 + 11,

14 = 1 · 11 + 3,

11 = 3 · 3 + 2,

3 = 1 · 2 + 1,

2 = 2 · 1.

Therefore
39

14
= [2; 1, 3, 1, 2].
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Convergents

Definition

Given a finite continued fraction [a0; a1, a2, . . . , an], for 0 ≤ k ≤ n
its kth convergent is

Ck = [a0; a1, . . . , ak ].

Example 2

Compute the convergents of 39/14.

Solution. We have
39

14
= [2; 1, 3, 1, 2].

Therefore:
C0 = [2] = 2,
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C1 = [2; 1] = 2 +
1

2
= 3,

C2 = [2; 1, 3] = 2 +
1

1 +
1

3

=
11

4
,

C3 = [2; 1, 3, 1] = 2 +
1

1 +
1

3 +
1

1

=
14

5
,

C4 = [2; 1, 3, 1, 2] =
39

14
.

Remark. The convergents of a continued fraction can be unwieldy
to deal with directly. Fortunately they can be compute recursively.
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Computing Convergents

Given real numbers a0, a1, . . . , an with ai > 0 for i ≥ 1, define two
sequences {pk}

n

k=0 and {qk}
n

k=0 by

p0 = a0, q0 = 1,
p1 = a1a0 + 1, q1 = a1,
pk = akpk−1 + pk−2, qk = akqk−1 + qk−2,

for k ≥ 2. We have:

Theorem 2

Let a0, a1, . . . , an ∈ R with ai > 0 for i ≥ 1. Define pk and qk as
above. Then the convergents of [a0; a1, . . . , an] are given by

Ck =
pk
qk

,

for k ≥ 0.
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Proof

We induct on n. Since

p0
q0

=
a0
1

= a0 = C0,
p1
q1

=
a1a0 + 1

a1
= a0 +

1

a1
= C1,

and
p2
q2

=
a2p1 + p0
a2q1 + q0

=
a2(a1a0 + 1) + a0

a2a1 + 1

= a0 +
a2

a2a1 + 1
= a0 +

1

a1 +
1

a2

= C2,

the result holds for n = 0, 1, 2.

Let n ≥ 2 and assume the result for all sequences a0, a1, . . . , an.
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For 0 ≤ k ≤ n− 1, the continued fractions

[a0; a1, . . . , an + 1/an+1] = [a0; a1, . . . , an, an+1]

have the same kth convergents as [a0, a1, . . . , an], and the former
also has length n.

By the inductive hypothesis its nth convergent is

Cn+1 = [a0; a1, . . . , an + 1/an+1] =

(

an +
1

an+1

)

pn−1 + pn−2
(

an +
1

an+1

)

qn−1 + qn−2

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1

=
pn+1

qn+1

.

This completes the induction.
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Example

Consider the continued fraction
39

14
= [2; 1, 3, 1, 2].

We have p0 = 2, p1 = 1 · 2 + 1 = 3, p2 = 3 · 3 + 2 = 11,

p3 = 1 · 11 + 3 = 14, p4 = 2 · 14 + 11 = 39,

and q0 = 1, q1 = 1, q2 = 3 · 1 + 1 = 4,

q3 = 1 · 4 + 1 = 5, q4 = 2 · 5 + 4 = 14.

These immediately imply that

C0 = 2, C1 = 3, C2 =
11

4
, C3 =

14

5
, C4 =

39

14
,

as above.
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When the ai are integers, the fractions pk/qk are always reduced.
This is a consequence of the following more specific result.

Theorem 3

If Ck = pk/qk is the kth convergent of the continued fraction
[a0; a1, . . . , an], then

pkqk−1 − qkpk−1 = (−1)k−1

for 1 ≤ k ≤ n

Proof. We induct on k . When k = 1 we have

p1q0 − q1p0 = (a1a0 + 1) · 1− a1a0 = 1 = (−1)0,

which is what we needed to show.
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Now assume the result for some 1 ≤ k < n. Then k + 1 ≥ 2 so
that

pk+1qk − qk+1pk = (ak+1pk + pk−1)qk − (ak+1qk + qk−1)pk

= qkpk−1 − pkqk−1 = − (−1)k−1 = (−1)k ,

proving the that k + 1 case holds. This completes the proof.

Corollary 1

If the ai are integers, then (pk , qk) = 1 for all k ≥ 1.

Proof. By Theorem 3 we have

(−1)k−1 ∈ pkZ+ qkZ = (pk , qk)Z.
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Theorem 3 has another interesting consequence.

Dividing the equation pkqk−1 − qkpk−1 = (−1)k−1 through by
qk−1qk we obtain

Ck − Ck−1 =
pk
qk

−
pk−1

qk−1

=
(−1)k−1

qk−1qk
.

Replacing k by k + 1 and adding the resulting equation to the
previous, after a little algebra we find that

Ck+1 − Ck−1 =
(−1)k−1(qk+1 − qk−1)

qk−1qkqk+1

.

Because the sequence {qk} is strictly increasing, the sign of the
RHS is (−1)k−1, which depends only on the parity of k .
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If k is odd, we therefore obtain Ck−1 < Ck+1, while if k is even we
have Ck+1 < Ck−1.

It follows that the subsequences {C2n+1} and {C2n} are strictly
decreasing and increasing, respectively.

Finally, if k is even, ℓ is odd and ℓ > k we have

Cℓ − Ck = Cℓ − Cℓ−1 + Cℓ−1 − Ck > 0,

while if ℓ < k

Cℓ − Ck = Cℓ − Ck+1 + Ck+1 − Ck > 0.

In either case we have Cℓ > Ck .
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Ordering of Convergents

This proves our last result.

Theorem 4

If Ck is the kth convergent of the continued fraction
[a0; a1, a2, . . . , an], then

C0 < C2 < C4 < · · · < C5 < C3 < C1.

Example. Recall that the convergents of 39/14 = [2; 1, 3, 1, 2] are

C0 = 2, C1 = 3, C2 =
11

4
= 2.75, C3 =

14

5
= 2.8, C4 =

39

14
≈ 2.786,

which satisfy
C0 < C2 < C4 < C3 < C1.
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Remarks

If we set
p
−2 = 0, p

−1 = 1, q
−2 = 1, q

−1 = 0,

then the relationships

pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2

hold for all k ≥ 0. Therefore, if we let

Rk =

(

pk qk
pk−1 qk−1

)

and Ak =

(

ak 1
1 0

)

,

we find that

AkRk−1 =

(

akpk−1 + pk−2 akqk−1 + qk−2

pk−1 qk−1

)

= Rk .

for k ≥ 0.
Daileda Finite Continued Fractions



It follows that

Rk = AkRk−1 = AkAk−1Rk−2

...

= AkAk−1 · · ·A0R−1

= AkAk−1 · · ·A0,

since R
−1 = I by definition. Taking the determinant we

immediately obtain

pkqk−1 − qkpk−1 = detRk =

k
∏

i=0

detAi = (−1)k+1,

which is the conclusion of Theorem 3.
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