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Introduction

One of the most important results in the theory of divisibility in Z

is the Fundamental Theorem of Arithmetic (FTA).

The FTA asserts that every natural number (greater than 1) can
be expressed uniquely as a product of prime numbers.

Crucial to proving the FTA is a result known as Euclid’s Lemma
(which we won’t state here).

Euclid’s Lemma, in turn, is an easy consequence of what we will
call Bézout’s Lemma, which is concerned with greatest common
divisors.

And that is where we will begin...
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Common Divisors

Given a, b ∈ Z, let

C (a, b) = {d ∈ N : d |a and d |b},

the set of (positive) common divisors of a and b.

The set C (a, b) is never empty since 1 ∈ C (a, b).

Furthermore, if a and b are both nonzero,

d ∈ C (a, b) ⇒ d ≤ min{|a|, |b|},

by the properties of divisibility discussed earlier.
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On the other hand, since d |0 for all d ∈ N, C (0, b) is just the set
of (positive) divisors of b.

So, if b 6= 0, then

d ∈ C (0, b) ⇒ d ≤ |b|.

Since C (a, b) = C (b, a), we have proven that as long as a and b
are not both zero, C (a, b) is a nonempty finite set of positive
integers.

Note that C (0, 0) = N, however.
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The Greatest Common Divisor

Definition

Let a, b ∈ Z, not both zero. The greatest common divisor (GCD)
of a and b, denoted (a, b), is the largest element of C (a, b):

(a, b) = maxC (a, b).

Because C (a, b) ⊂ N is finite and nonempty when a and b are not
both 0, (a, b) is a well-defined positive integer.

Although it may seem counterintuitive, it will be convenient to
define (0, 0) = 0.
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Examples

We have

(8, 76) = 4, (91, 70) = 7, (72, 84) = 12,

(54, 39) = 3, (16, 69) = 1.

For all a, b ∈ Z,
(a, b) = (b, a).

For any a ∈ Z,
(a, 0) = |a|.
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Computing the GCD

Let a, b ∈ Z both be nonzero.

We now pose our main question: how can (a, b) be computed?

One option is brute force: perform trial divisions by every positive
d ≤ min{|a|, |b|} to compute C (a, b) explicitly.

Although this process must end in a finite number of steps, it is
extremely inefficient.

We can derive a much more efficient procedure based on the
following observation.
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Periodicity of the GCD

Lemma 1

Let a, b ∈ Z. For any n ∈ Z

(a, b) = (a, b + na).

Remark. Lemma 1 tells us that, as a function of b, the GCD
(a, b) is periodic with period a.

Proof of Lemma 1. If a = 0, there is nothing to prove, so we may
assume a 6= 0.

It therefore suffices to prove that C (a, b) = C (a, b + na).
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Let d ∈ C (a, b).

Because d |a and d |b, d divides b + na since it is a linear
combination of a and b.

Thus d ∈ C (a, b + na). This proves that C (a, b) ⊆ C (a, b + na).

Now suppose d ∈ C (a, b + na). Then d |a and d |b + na, so that d
also divides the linear combination

(−n)a + (b + na) = b.

Therefore d ∈ C (a, b). This shows that C (a, b + na) ⊆ C (a, b)
and completes the proof.
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GCDs and the Division Algorithm

We can now connect GCDs to the Division Algorithm.

Corollary 1

Let a, b ∈ Z with a 6= 0. Use the Division Algorithm to write
b = qa + r with 0 ≤ r < |a|. Then

(a, b) = (a, r).

Proof. According to Lemma 1 we have

(a, b) = (a, qa + r) = (a, r).
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So, when faced with a (nontrivial) GCD (a, b), by performing a
division we can always assume b is smaller than a.

But (a, b) = (b, a)...

Example. Consider the GCD (91, 70). By Corollary 1 we have

(91, 70) = (70, 91) = (70, 21) = (21, 70) = (21, 7) = 7.

This procedure is the basis of the Euclidean Algorithm for
computing the GCD.
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The Euclidean Algorithm (EA)

Let a, b ∈ Z be nonzero. Consider the following sequence of
divisions and GCD equalities:

b = q1a+ r1 (a, b) = (a, r1)
a = q2r1 + r2 (r1, a) = (r1, r2)
r1 = q3r2 + r3 (r2, r1) = (r2, r3)

...
...

rk−1 = qk+1rk + rk+1 (rk , rk−1) = (rk , rk+1)
...

...

in which the remainders satisfy

|a| > r1 > r2 > r3 > · · · > rk > rk+1 > · · · ≥ 0.
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Because the remainders rk are nonnegative integers, they cannot
decrease indefinitely.

Therefore the sequence eventually terminates after n + 1 divisions
with

rn−1 = qn+1rn,

i.e. rn+1 = 0, so that the final GCD equation reads

(rn, rn−1) = (rn, 0) = rn.

Because the GCD remains unchanged at every stage, this means
that

(a, b) = rn.

That is, the final nonzero remainder will be (a, b)!
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Example

Let’s compute (336, 726). We have

726 = 2 · 336 + 54,

336 = 6 · 54 + 12,

54 = 4 · 12 + 6,

12 = 2 · 6.

Since the last nonzero remainder is 6, it must be the case that

(336, 726) = 6.

Remark. Note that we have found the GCD without any prior
knowledge of the divisors of either 336 or 726.
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A Different Point of View

Strictly speaking, in terms of computing the GCD, the quotients in
the Euclidean Algorithm serve no purpose.

It is the equality of GCDs of pairs of remainders that make the
algorithm valid.

However, if we analyze the algorithm from a different perspective,
we will find that the quotients contain “hidden” information about
(a, b) and its relationship to a and b.
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Use the remainders in the Euclidean Algorithm to form the vectors

x0 =

(

b
a

)

, x1 =

(

a
r1

)

, xk =

(

rk−1

rk

)

for k ≥ 2.

Let

Qk =

(

0 1
1 −qk

)

for k ≥ 1.

Notice that we can re-express the equalities of the EA as

xk+1 =

(

rk
rk+1

)

=

(

rk
rk−1 − qk+1rk

)

=

(

0 1
1 −qk+1

)(

rk−1

rk

)

= Qk+1xk ,

for k ≥ 0.
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Therefore, if we work backward, we obtain

xn = Qnxn−1 = QnQn−1xn−2 = · · · = QnQn−1 · · ·Q1x0.

Because rn = (a, b), this is equivalent to

QnQn−1 · · ·Q1

(

b
a

)

=

(

∗
(a, b)

)

. (1)

Finally, write

QnQn−1 · · ·Q1 =

(

∗ ∗
s r

)

, (2)

where r , s ∈ Z since the Qk are integral matrices.
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Substituting (2) into (1) and comparing the bottom entry on both
sides, we find that a, b, r , s satisfy the relationship

ra + sb = (a, b).

We have just given a constructive proof of Bézout’s Lemma.

Theorem 1 (Bézout’s Lemma)

Let a, b ∈ Z. There exist r , s ∈ Z so that

(a, b) = ra + sb.

As we have just seen, the quotients in the Euclidean Algorithm can
be used to compute r and s explicitly.
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Remarks

Although the existence of r and s in Bézout’s Lemma is
primarily of theoretical importance, r and s do have practical
applications, so it’s handy to have a way to find them.

The values of r and s are not unique, but we will give a
complete description when we study linear Diophantine
equations.

Note that when computing r and s from the quotients qk , the
final quotient qn+1 is not used.
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Example

Applied to (a, b) = (336, 726) = 6, the Euclidean Algorithm took
n+ 1 = 4 divisions, so we need the first n = 3 quotients, which are

q1 = 2, q2 = 6, q3 = 4.

We have

Q3Q2Q1 =

(

0 1
1 −4

) (

0 1
1 −6

) (

0 1
1 −2

)

=

(

−6 13
25 −54

)

.

Thus we can take r = −54, s = 25 in Bézout’s Lemma. That is,
we have

−54 · 336 + 25 · 726 = 6.
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Efficiency of the Euclidean Algorithm

So just how efficient is the EA? Specifically, how many steps
(divisions) do we expect it to take?

The answer is related to the Fibonacci sequence {Fn}:

F1 = F2 = 1, Fn+2 = Fn+1 + Fn for n ≥ 1.

Specifically, one can prove:

Theorem 2

Let a, b ∈ N with a < b. Let N be the largest index so that
FN ≤ b. Then the EA takes at most N − 2 steps to compute
(a, b), and this bound is sharp.
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Recall that the Fibonacci numbers are given explicitly by

Fn =
1√
5
(φn − (φ∗)n) ,

where

φ =
1 +

√
5

2
and φ∗ =

1−
√
5

2

are the golden ratio and its algebraic conjugate.

Since |φ∗| < 1, this means Fn ≈ φn

√
5
for large n.

So, for large b, we will have FN ≤ b (roughly) if and only if
φN

√
5
≤ b, or N ≤ log(b

√
5)/ log(φ).

Therefore the number of steps in the EA is asymptotically
logarithmic (at worst) in the larger input.
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