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Introduction

Today we will develop the theory of infinite continued fractions.

By defining an infinite continued fraction to be the limit of its
(finite) convergents, we can appeal to many of the results we have
already proven.

We will see that infinite continued fractions represent irrational
numbers, and conversely that every irrational can be so
represented.

Our final result will show that the convergents of an infinite
continued fraction yield its “best” rational approximations.
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Infinite Continued Fractions

Given a sequence {ai}i∈N0
of real numbers with ai > 0 for i > 0,

we define

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

= lim
n→∞

[a0; a1, a2, . . . , an],

provided the limit exists.

As before, we call

Cn = [a0; a1, a2, . . . , an]

the nth convergent of the infinite continued fraction [a0; a1, a2, . . .].
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Our results from last time show that if we define {pn} and {qn} by

p0 = a0, q0 = 1,
p1 = a1a0 + 1 q1 = a1,
pn = anpn−1 + pn−2, qn = anqn−1 + qn−2,

for n ≥ 2 (note that the qn are positive and strictly increasing for
all n), then Cn = pn/qn and

C0 < C2 < C4 · · · < C5 < C3 < C1.

It follows that

α = lim
n→∞

C2n and α′ = lim
n→∞

C2n+1

both exist and satisfy

C2n ≤ α ≤ α′ ≤ C2n+1 for all n ≥ 0.
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Thus

|α− α′| ≤ C2n+1 − C2n =
1

q2n+1q2n
<

1

q22n
.

This gives us a convenient convergence criterion for infinite
continued fractions.

Theorem 1

Let {ai}i∈N0
be a sequence of real numbers with ai > 0 for i > 0,

and define {qn} as above. If qn → ∞ as n → ∞, then

[a0; a1, a2, a3, . . .] converges.

Proof. If qn → ∞, then 1/q22n → 0. From the inequality above we
therefore have

lim
n→∞

C2n = α = α′ = lim
n→∞

C2n+1.

It follows that
[a0; a1, a2, a3, . . .] = lim

n→∞
Cn

exists.
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Corollary 1

If ai ∈ N for all i ≥ 1, then [a0; a1, a2, a3, . . .] converges.

Proof. Since q0 = 1, q1 = a1 and

qn = anqn−1 + qn−2 for n ≥ 2,

the qn form an increasing sequence of natural numbers.

Hence qn → ∞ as n → ∞ and the conclusion follows from
Theorem 1.

Moral. Every integral infinite continued fraction converges!
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Example

Example 1

Compute the value of α = [1; 1, 1, 1, . . .].

Solution. We have

α = lim
n→∞

[1; 1, 1, . . . , 1
︸ ︷︷ ︸

n times

] = lim
n→∞

1 +
1

1 +
1

1 +
. . . + 1

1

= 1 +
1

limn→∞[1; 1, 1, . . . , 1
︸ ︷︷ ︸

n−1 times

]
= 1 +

1

α
.

This is equivalent to α2 − α− 1 = 0, which we can solve using the
quadratic formula.
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Indeed,

α =
1±

√
5

2
.

Because α is the limit of positive numbers (its convergents), it
cannot be negative.

Therefore

α = 1 +
1

1 +
1

1 +
. . .

=
1 +

√
5

2
,

which is the golden ratio.
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Note that if α = [a0; a1, a2, . . .] converges, then because it is the
limit of both its even-indexed and odd-indexed convergents, we
must have

C0 < C2 < C4 < · · · < α < · · ·C5 < C3 < C1.

In particular, α is always between Cn and Cn+1. This has an
interesting consequence.

Theorem 2

If α = [a0; a1, a2, a3, . . .] is an integral infinite continued fraction,

then α is irrational.

Proof. For any n ≥ 1 we have

0 < |α− Cn| < |Cn+1 − Cn| =
1

qn+1qn
.

Assume α is rational: α = a/b with a, b ∈ Z.
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We then have

0 <

∣
∣
∣
∣

a

b
− pn

qn

∣
∣
∣
∣
<

1

qn+1qn
⇒ 0 < |aqn − bpn| <

b

qn+1

.

We have aqn − bpn ∈ Z for all n, yet b/qn+1 → 0 as n → ∞.

This is impossible.

We have now seen:

x ∈ R is rational iff x is equal to a finite (integral) continued
fraction.

Every (integral) infinite continued fraction is irrational.
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It is therefore natural to ask:

Question. Can every irrational (real) number be represented by an
integral continued fraction?

Let x ∈ R be irrational. Recursively define two sequences {xn} and
{an} as follows.

Set x0 = x and a0 = ⌊x⌋. Then, given xn and an, define

xn+1 =
1

xn − an
, an+1 = ⌊xn+1⌋.

Claim. xn is irrational for all n, a0 ∈ Z and an ∈ N for n ≥ 1.
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Proof. We have assumed that x0 = x is irrational, and
a0 = ⌊x⌋ ∈ Z by definition.

We prove the remainder of the claim by induction on n. First, we
have

0 < x0 − a0 < 1,

since a0 = ⌊x0⌋ and x0 = x is irrational. It follows that

x1 =
1

x0 − a0
> 1

is a well-defined irrational number.

Hence a1 = ⌊x1⌋ ∈ N. This proves the n = 1 case.
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Now assume that xn is irrational and an ∈ N, for some n ≥ 1. Then

0 < xn − an < 1

since xn is irrational and an = ⌊xn⌋. Thus

xn+1 =
1

xn − an
> 1

is a well-defined irrational number, and

an+1 = ⌊xn+1⌋ ∈ N.

This completes the induction.
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Claim. x = [a0; a1, a2, . . . , an, xn+1].

Proof. Again we induct on n ≥ 1. When n = 1 we have

[a0; x1] = a0 +
1

x1
= a0 + (x0 − a0) = x0 = x ,

establishing the n = 1 case.

Now assume the result for some n ≥ 1. Then

[a0; a1, . . . , an, an+1, xn+2] =

[

a0; a1, a2, . . . , an+1,
1

xn+1 − an+1

]

= [a0; a1, a2, . . . , an+1 + (xn+1 − an+1)]

= [a0; a1, a2, . . . , an, xn+1] = x ,

and we are finished.
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Now the nth convergent of

x = [a0; a1, a2, . . . , an, xn+1] = C ′
n+1

is
[a0; a1, a2, . . . , an] = Cn.

Thus

|Cn − x | = |C ′
n
− C ′

n+1| =
1

(xn+1qn + qn−1)qn

<
1

(an+1qn + qn−1)qn
=

1

qn+1qn
<

1

q2n
,

since an+1 < xn+1.
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We have therefore proven:

Theorem 3

Let x ∈ R be irrational and define {an} as above. Then the

convergents Cn = pn/qn of [a0; a1, a2, . . .] satisfy

|x − Cn| <
1

qn+1qn
<

1

q2
n

.

Corollary 2

Let x ∈ R be irrational and define {an} as above. Then

x = [a0; a1, a2, . . .].

Proof. This follows at once since an ∈ N implies qn → ∞.
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Remarks

This result shows that every irrational number is equal to an
infinite (integral) continued fraction.

It is not hard to show that such an expression is unique.

We can therefore refer to “the” continued fraction expansion
of an irrational number.

Finite continued fraction expansions are only “almost” unique
(in a way we won’t quantify here).
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Examples

Example 2

Compute the continued fraction expansion of
√
6.

Solution. We have

x0 =
√
6, a0 = ⌊

√
6⌋ = 2,

x1 =
1√
6− 2

=
2 +

√
6

2
= 1 +

√
6

2
, a1 = ⌊x1⌋ = 2,

x2 =
1

1 +
√
6
2

− 2
= 2 +

√
6, a2 = ⌊x2⌋ = 4,

x3 =
1

2 +
√
6− 4

= x1.

Because x3 = x1, the pattern above will continue indefinitely. That
is, √

6 = [2; 2, 4].
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Example 3

Find the continued fraction expansion of e.

Solution. With the aid of a computer we find that

x0 = e, a0 = ⌊e⌋ = 2,

x1 =
1

e − 2
≈ 1.3922, a1 = 1,

x2 =
1

x1 − a1
≈ 2.5496, a2 = 2,

x3 =
1

x2 − a2
≈ 1.8193, a3 = 1,

x4 =
1

x3 − a3
≈ 1.2204, a4 = 1,

x5 =
1

x4 − a4
≈ 4.5355, a5 = 4,

x6 =
1

x5 − a5
≈ 1.8671, a6 = 1.
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One can prove that this pattern persists:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . , 1, 2n, 1, . . .] .

Example 4

Find the first few terms in the continued fraction expansion of π.

Solution. With the aid of a computer we find that

x0 = π, a0 = ⌊π⌋ = 3,

x1 =
1

e − 2
≈ 7.0625, a1 = 7,

x2 =
1

x1 − a1
≈ 15.9965, a2 = 15,

x3 =
1

x2 − a2
≈ 1.0034, a3 = 1,
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x4 =
1

x3 − a3
≈ 292.6345, a4 = 292,

x5 =
1

x4 − a4
≈ 1.5758, a5 = 1.

Thus
π = [3; 7, 15, 1, 292, 1, . . .],

with no (known) pattern.

Notice that

[3; 7] = 3 +
1

7
=

22

7
,

a very well-known approximation to π. This is no coincidence.

Daileda Infinite Continued Fractions



One can prove that the convergents of the continued fraction
expansion of an irrational number provide the “best” rational
approximations, in the following sense.

Theorem 4

Let x ∈ R be irrational and let Cn = pn/qn be the nth convergent

of its continued fraction expansion. If a, b ∈ Z and 1 ≤ b ≤ qn,

then

|x − Cn| ≤
∣
∣
∣x − a

b

∣
∣
∣ .

Moral. Among all rational numbers with denominator no larger
than qn, Cn is the closest to x .
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So, in order to get the “next best” rational approximation to π we
need only compute

[3; 7, 15] = 3 +
1

7 +
1

15

= 3 +
15

106
=

333

106
= 3.14150943 . . .

There is no better approximation with a denominator ≤ 106.

Have a Great Winter Break!
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