Applications of Bézout's Lemma

Ryan C. Daileda

Trinity University
Number Theory

Introduction

Recall: As a consequence of the Euclidean Algorithm (EA) we deduced:

Theorem 1 (Bézout's Lemma)

For any pair $a, b \in \mathbb{Z}$, there exist $r, s \in \mathbb{Z}$ so that

$$
(a, b)=r a+s b
$$

We also gave a procedure for computing r and s based on the quotients in the EA.

Today we will look at a few important consequences of Bézout's Lemma.

Notation

Given $a \in \mathbb{Z}$, let $a \mathbb{Z}$ denote the set of multiples of a :

$$
a \mathbb{Z}=\{a n: n \in \mathbb{Z}\}=\{b \in \mathbb{Z}: a \mid b\}
$$

If $S, T \subseteq \mathbb{Z}$, we let

$$
S+T=\{s+t: s \in S, t \in T\}
$$

the set of pairwise sums of elements from S and T.
It follows that

$$
a \mathbb{Z}+b \mathbb{Z}=\{r a+s b: r, s \in \mathbb{Z}\}
$$

is the set of all linear combinations of a and b.

As a corollary to Bézout's Lemma, we can classify the elements of $a \mathbb{Z}+b \mathbb{Z}$ more precisely.

Corollary 1

Let $a, b \in \mathbb{Z}$. Then $a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}$.

That is, the linear combinations of a and b coincide with the multiples of (a, b).

Proof. We show double-containment.
Since $(a, b) \mid a$ and $(a, b) \mid b,(a, b)$ divides every element of $a \mathbb{Z}+b \mathbb{Z}$. Thus,

$$
a \mathbb{Z}+b \mathbb{Z} \subseteq(a, b) \mathbb{Z}
$$

We only need Bézout's Lemma for the reverse containment.

Let $c \in(a, b) \mathbb{Z}$. Then $c=(a, b) d$ for some $d \in \mathbb{Z}$.

Use Bézout's Lemma to write $(a, b)=r a+s b$ with $r, s \in \mathbb{Z}$.

Then we have

$$
\begin{aligned}
c & =(a, b) d=(r a+s b) d=(r a) d+(s b) d \\
& =(r d) a+(s d) b \in a \mathbb{Z}+b \mathbb{Z} .
\end{aligned}
$$

Therefore $(a, b) \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$, and the proof is complete.

Example

Example 1

If a is odd, prove that $(3 a, 3 a+2)=1$.
Solution. Since

$$
2=-(3 a)+(3 a+2) \in 3 a \mathbb{Z}+(3 a+2) \mathbb{Z}=(3 a, 3 a+2) \mathbb{Z}
$$

it must be that $(3 a, 3 a+2) \mid 2$. Thus $(3 a, 3 a+2)$ is 1 or 2 .
If a is odd, then so is $3 a$ (odd \times odd $=$ odd), so $2 \nmid 3 a$. Therefore $(3 a, 3 a+2)=2$ is impossible.

We conclude that $(3 a, 3 a+2)=1$.

Moral: If d is a specific linear combination of a and b, then

$$
d \in a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z} \Rightarrow(a, b) \mid d
$$

so that $|d|$ provides an upper bound on (a, b).
Taking this to the extreme we obtain the following "strong" version of Bézout's Lemma.

Lemma 1

Let $a, b \in \mathbb{Z}$. Then $(a, b)=1$ if and only if there exist $r, s \in \mathbb{Z}$ so that

$$
r a+s b=1
$$

Proof. The forward implication follows from Bézout's Lemma.

For the converse, simply notice that if $r a+s b=1$, then

$$
1 \in a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z} \Rightarrow(a, b) \mid 1 \Rightarrow(a, b)=1
$$

\square

Example 2

Show that for any $a \in \mathbb{Z}$, one has $(3 a+2,5 a+3)=1$.
Solution. Since

$$
5(3 a+2)-3(5 a+3)=10-9=1,
$$

the result follows from Lemma 1.

If $m, n \in \mathbb{Z}$ are nonzero, we know that

$$
|m| \leq|m n|
$$

This implies that $|m|$ is the least positive element of $m \mathbb{Z}$.
Corollary 1 now yields:

Corollary 2

If $a, b \in \mathbb{Z}$ are not both zero, then (a, b) is the least positive linear combination of a and b.

Proof. This follows at once since $(a, b)>0$ and
$a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}$.

We now deduce another useful property of the GCD.

Theorem 2

Let $a, b, k \in \mathbb{Z}$. Then $(k a, k b)=|k|(a, b)$.
Proof.
If $a=b=0$ or $k=0$, there is nothing to prove since $(0,0)=0$.
So we may assume $(a, b) \neq 0$ and $k \neq 0$. By Corollary 1 we have

$$
(k a, k b) \mathbb{Z}=(k a) \mathbb{Z}+(k b) \mathbb{Z}=k(a \mathbb{Z}+b \mathbb{Z})=k(a, b) \mathbb{Z}
$$

Therefore the sets $(k a, k b) \mathbb{Z}$ and $k(a, b) \mathbb{Z}$ must have the same least positive element. Hence

$$
(k a, k b)=|k(a, b)|=|k|(a, b)
$$

Example 3

We have

$$
\begin{aligned}
(100,28) & =4(25,7)=4 \cdot 1=4 \\
(135,105) & =5(27,21)=15(3,7)=15 \cdot 1=15
\end{aligned}
$$

Theorem 2 has some interesting consequences. The first is:

Corollary 3

Let $a, b, c \in \mathbb{Z}$. If $c \mid a$ and $c \mid b$, then $c \mid(a, b)$.

This says that not only is the GCD the greatest common divisor, it is also divisible by every common divisor.

Proof of Corollary 3. Write $a=c d$ and $b=c e$ with $d, e \in \mathbb{Z}$. Then

$$
(a, b)=(c d, c e)=|c|(d, e)=(\pm c)(d, e)=c(\pm(d, e))
$$

showing that $c \mid(a, b)$.
Notice that Corollary 3 implies that

$$
C(a, b)=\{c \in \mathbb{N}: c \mid a \text { and } c \mid b\}=\{c \in \mathbb{N}: c \mid(a, b)\}
$$

i.e. the positive common divisors of a and b are the same as the positive divisors of (a, b) (alone).

This in turn implies that

$$
(a, b)=1 \Rightarrow C(a, b)=\{1\} .
$$

Corollary 4

Let $a, b \in \mathbb{Z}$, not both zero. Write $a=(a, b) a^{\prime}$ and $b=(a, b) b^{\prime}$ with $a^{\prime}, b^{\prime} \in \mathbb{Z}$. Then $\left(a^{\prime}, b^{\prime}\right)=1$.

Proof. We have

$$
(a, b)=\left((a, b) a^{\prime},(a, b) b^{\prime}\right)=(a, b)\left(a^{\prime}, b^{\prime}\right)
$$

by Theorem 2. Since $(a, b) \neq 0$, we can cancel it from both sides, yielding $\left(a^{\prime}, b^{\prime}\right)=1$.

Remark. If we allow ourselves the use of fractions, Theorem 3 says that

$$
\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right)=1
$$

Theorem 3 shows that given a (non-trivial) pair of integers, once we factor out the GCD, we are left with a new pair that has "no" common factors (other that ± 1).

In the theory of divisibility such pairs are particularly important, so we give them a special name.

Definition

Let $a, b \in \mathbb{Z}$. We say that a and b are relatively prime (or coprime) if $(a, b)=1$.

For example, 15 and 28 are relatively prime, since

$$
(15,28)=(15,13)=(13,15)=(13,2)=1
$$

Pairs of coprime integers have "special" divisibility properties.

For example, consider the following divisibility statements:

$$
\begin{aligned}
a \mid c \text { and } b \mid c & \Rightarrow a b \mid c, \\
a \mid b c \text { and } a \nmid b & \Rightarrow a \mid c .
\end{aligned}
$$

As stated, these are both false in general:

$$
\begin{aligned}
& 6 \mid 24 \text { and } 8 \mid 24 \text {, but } 6 \cdot 8=48 \nmid 24 ; \\
& 6 \mid(9 \cdot 2) \text { and } 6 \nmid 9, \text { but } 6 \nmid 2 .
\end{aligned}
$$

With one additional hypothesis, however, we can prove analogous versions of both statements.

Theorem 3

Let $a, b, c \in \mathbb{Z}$. If a and b are relatively prime, then

$$
a \mid c \text { and } b|c \Rightarrow a b| c
$$

Proof. Suppose a and b are relatively prime, and that $a \mid c$ and $b \mid c$. Then there are integers r, s, d, e so that

$$
r a+s b=1, \quad c=a d, \quad c=b e
$$

Multiply the first by c, then substitute in the second and third:

$$
c=c(r a+s b)=r a c+s b c=r a(b e)+s b(a d)=a b(r e+s d) .
$$

This proves that $a b \mid c$.

Euclid's Lemma

Finally we come to Euclid's Lemma.

Theorem 4 (Euclid's Lemma)

Let $a, b, c \in \mathbb{Z}$. If $a \mid b c$ and a is relatively prime to b, then $a \mid c$.

Proof. Under the stated hypotheses, there must exist integers r, s, d so that

$$
r a+s b=1 \quad \text { and } \quad a d=b c
$$

Multiply the first by c, then substitute in the second:

$$
c=c(r a+s b)=(c r) a+s(b c)=(c r) a+s(a d)=a(c r+s d),
$$

proving that $a \mid c$.

