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Introduction

Recall: As a consequence of the Euclidean Algorithm (EA) we
deduced:

Theorem 1 (Bézout’s Lemma)

For any pair a, b ∈ Z, there exist r , s ∈ Z so that

(a, b) = ra + sb.

We also gave a procedure for computing r and s based on the
quotients in the EA.

Today we will look at a few important consequences of Bézout’s
Lemma.
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Notation

Given a ∈ Z, let aZ denote the set of multiples of a:

aZ = {an : n ∈ Z} = {b ∈ Z : a|b}.

If S ,T ⊆ Z, we let

S + T = {s + t : s ∈ S , t ∈ T},

the set of pairwise sums of elements from S and T .

It follows that

aZ+ bZ = {ra + sb : r , s ∈ Z}

is the set of all linear combinations of a and b.
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As a corollary to Bézout’s Lemma, we can classify the elements of
aZ+ bZ more precisely.

Corollary 1

Let a, b ∈ Z. Then aZ+ bZ = (a, b)Z.

That is, the linear combinations of a and b coincide with the
multiples of (a, b).

Proof. We show double-containment.

Since (a, b)|a and (a, b)|b, (a, b) divides every element of aZ+ bZ.
Thus,

aZ+ bZ ⊆ (a, b)Z.
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We only need Bézout’s Lemma for the reverse containment.

Let c ∈ (a, b)Z. Then c = (a, b)d for some d ∈ Z.

Use Bézout’s Lemma to write (a, b) = ra + sb with r , s ∈ Z.

Then we have

c = (a, b)d = (ra + sb)d = (ra)d + (sb)d

= (rd)a + (sd)b ∈ aZ+ bZ.

Therefore (a, b)Z ⊆ aZ+ bZ, and the proof is complete.
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Example

Example 1

If a is odd, prove that (3a, 3a + 2) = 1.

Solution. Since

2 = − (3a) + (3a + 2) ∈ 3aZ+ (3a + 2)Z = (3a, 3a + 2)Z,

it must be that (3a, 3a + 2)|2. Thus (3a, 3a + 2) is 1 or 2.

If a is odd, then so is 3a (odd × odd = odd), so 2 ∤ 3a. Therefore
(3a, 3a + 2) = 2 is impossible.

We conclude that (3a, 3a + 2) = 1.
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Moral: If d is a specific linear combination of a and b, then

d ∈ aZ+ bZ = (a, b)Z ⇒ (a, b)|d ,

so that |d | provides an upper bound on (a, b).

Taking this to the extreme we obtain the following “strong”
version of Bézout’s Lemma.

Lemma 1

Let a, b ∈ Z. Then (a, b) = 1 if and only if there exist r , s ∈ Z so

that

ra + sb = 1.

Proof. The forward implication follows from Bézout’s Lemma.
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For the converse, simply notice that if ra + sb = 1, then

1 ∈ aZ+ bZ = (a, b)Z ⇒ (a, b)|1 ⇒ (a, b) = 1.

Example 2

Show that for any a ∈ Z, one has (3a + 2, 5a + 3) = 1.

Solution. Since

5(3a + 2)− 3(5a + 3) = 10 − 9 = 1,

the result follows from Lemma 1.

Daileda Bézout’s Lemma



If m, n ∈ Z are nonzero, we know that

|m| ≤ |mn|.

This implies that |m| is the least positive element of mZ.

Corollary 1 now yields:

Corollary 2

If a, b ∈ Z are not both zero, then (a, b) is the least positive linear

combination of a and b.

Proof. This follows at once since (a, b) > 0 and
aZ+ bZ = (a, b)Z.
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We now deduce another useful property of the GCD.

Theorem 2

Let a, b, k ∈ Z. Then (ka, kb) = |k |(a, b).

Proof.

If a = b = 0 or k = 0, there is nothing to prove since (0, 0) = 0.

So we may assume (a, b) 6= 0 and k 6= 0. By Corollary 1 we have

(ka, kb)Z = (ka)Z + (kb)Z = k(aZ+ bZ) = k(a, b)Z.

Therefore the sets (ka, kb)Z and k(a, b)Z must have the same
least positive element. Hence

(ka, kb) = |k(a, b)| = |k |(a, b).
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Example 3

We have

(100, 28) = 4(25, 7) = 4 · 1 = 4,

(135, 105) = 5(27, 21) = 15(3, 7) = 15 · 1 = 15.

Theorem 2 has some interesting consequences. The first is:

Corollary 3

Let a, b, c ∈ Z. If c |a and c |b, then c |(a, b).

This says that not only is the GCD the greatest common divisor, it
is also divisible by every common divisor.
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Proof of Corollary 3. Write a = cd and b = ce with d , e ∈ Z. Then

(a, b) = (cd , ce) = |c |(d , e) = (±c)(d , e) = c
(

± (d , e)
)

,

showing that c |(a, b).

Notice that Corollary 3 implies that

C (a, b) = {c ∈ N : c |a and c |b} = {c ∈ N : c |(a, b)},

i.e. the positive common divisors of a and b are the same as the
positive divisors of (a, b) (alone).

This in turn implies that

(a, b) = 1 ⇒ C (a, b) = {1}.
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Corollary 4

Let a, b ∈ Z, not both zero. Write a = (a, b)a′ and b = (a, b)b′

with a′, b′ ∈ Z. Then (a′, b′) = 1.

Proof. We have

(a, b) =
(

(a, b)a′, (a, b)b′
)

= (a, b)(a′, b′)

by Theorem 2. Since (a, b) 6= 0, we can cancel it from both sides,
yielding (a′, b′) = 1.

Remark. If we allow ourselves the use of fractions, Theorem 3
says that

(

a

(a, b)
,

b

(a, b)

)

= 1.
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Theorem 3 shows that given a (non-trivial) pair of integers, once
we factor out the GCD, we are left with a new pair that has “no”
common factors (other that ±1).

In the theory of divisibility such pairs are particularly important, so
we give them a special name.

Definition

Let a, b ∈ Z. We say that a and b are relatively prime (or coprime)
if (a, b) = 1.

For example, 15 and 28 are relatively prime, since

(15, 28) = (15, 13) = (13, 15) = (13, 2) = 1.
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Pairs of coprime integers have “special” divisibility properties.

For example, consider the following divisibility statements:

a|c and b|c ⇒ ab|c ,

a|bc and a ∤ b ⇒ a|c .

As stated, these are both false in general:

6|24 and 8|24, but 6 · 8 = 48 ∤ 24;

6|(9 · 2) and 6 ∤ 9, but 6 ∤ 2.

With one additional hypothesis, however, we can prove analogous
versions of both statements.
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Theorem 3

Let a, b, c ∈ Z. If a and b are relatively prime, then

a|c and b|c ⇒ ab|c .

Proof. Suppose a and b are relatively prime, and that a|c and b|c .
Then there are integers r , s, d , e so that

ra + sb = 1, c = ad , c = be.

Multiply the first by c , then substitute in the second and third:

c = c(ra + sb) = rac + sbc = ra(be) + sb(ad) = ab(re + sd).

This proves that ab|c .
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Euclid’s Lemma

Finally we come to Euclid’s Lemma.

Theorem 4 (Euclid’s Lemma)

Let a, b, c ∈ Z. If a|bc and a is relatively prime to b, then a|c.

Proof. Under the stated hypotheses, there must exist integers
r , s, d so that

ra+ sb = 1 and ad = bc .

Multiply the first by c , then substitute in the second:

c = c(ra + sb) = (cr)a + s(bc) = (cr)a + s(ad) = a(cr + sd),

proving that a|c .
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