Linear Diophantine Equations

Ryan C. Daileda

Trinity University

Number Theory

Introduction

A Diophantine equation is any equation (usually polynomial) in one or more variables that is to be solved in \mathbb{Z}.

For example, a pythagorean triple is a solution to the Diophantine equation

$$
x^{2}+y^{2}=z^{2}
$$

such as $(3,4,5)$ or $(5,12,13)$.
Solving Diophantine equations is substantially more difficult than solving equations over \mathbb{R}, say, since \mathbb{Z} is discrete while \mathbb{R} is continuous and we can appeal to the tools of analysis.

Today we will consider the simplest of all Diophatine equations: linear Diophantine equations in two variables.

Motivating Examples

Consider the equation

$$
\begin{equation*}
3 x+5 y=7 \tag{1}
\end{equation*}
$$

If we work in \mathbb{R}, for any x we can solve for y so that (1) holds.

If we plot the points that solve (1) in \mathbb{R}^{2}, we get a line.

The integral solutions to (1) are where this line intersects the lattice \mathbb{Z}^{2} of points with integral coordinates.

The line $3 x+5 y=7$ in \mathbb{R}^{2}.

The lattice \mathbb{Z}^{2}.

The integral solutions to $3 x+5 y=7$.

We immediately observe (and can easily verify) the solutions:

$$
\begin{array}{ll}
x=-6 \text { and } y=5 ; & x=-1 \text { and } y=2 ; \\
x=4 \text { and } y=-1 ; & x=9 \text { and } y=-4 ;
\end{array}
$$

which are regularly spaced on the line.

On the other hand, the equation

$$
4 x+6 y=3
$$

has no integral solutions (why not?).

That is, the line with equation $4 x+6 y=3$ completely avoids the lattice \mathbb{Z}^{2}.

The line $4 x+6 y=3$.

Linear Diophantine Equations

As we will see, these are the only two possible situations.
Fix $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$, and consider the linear Diophantine equation

$$
\begin{equation*}
a x+b y=c . \tag{2}
\end{equation*}
$$

Goal: Describe all solutions to (2) in \mathbb{Z}.
Notice that if $(x, y) \in \mathbb{Z}^{2}$ solves (2), then

$$
c \in a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}
$$

So a necessary condition for the existence of solutions to (2) is

$$
(a, b) \mid c .
$$

This condition is also sufficient. To see this, suppose $(a, b) \mid c$.
Write $c=(a, b) d$ with $d \in \mathbb{Z}$.
By Bézout's lemma, we can find $r, s \in \mathbb{Z}$ so that

$$
a r+b s=(a, b)
$$

If we multiply both sides by d we obtain

$$
a(r d)+b(s d)=(a, b) d=c .
$$

Thus $x=r d, y=s d$ is a solution to $a x+b y=c$.

Summary

Theorem 1

Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. The Diophantine equation

$$
a x+b y=c
$$

has a solution if and only if $(a, b) \mid c$. In this case, one solution is given by

$$
x_{0}=r \frac{c}{(a, b)}, \quad y_{0}=s \frac{c}{(a, b)},
$$

where $r, s \in \mathbb{Z}$ satisfy $a r+b s=(a, b)$.

Because we can use the Euclidean algorithm to effectively compute $(a, b), r$ and s, we can always produce at least one solution to $a x+b y=c$ (when it exists).

Examples

Example 1

Solve the Diophantine equation $3 x+6 y=7$.
Solution. Since $(3,6)=3$, and $3 \nmid 7$, this equation has no solutions in \mathbb{Z}.

Example 2

Solve the Diophantine equation $3 x+5 y=7$.
Solution. Since $(3,5)=1$ the equation

$$
3 x+5 y=7
$$

must have integral solutions: $x=-1, y=2$ and $x=4, y=-1$ work, for instance. Can we find them all?

Solving $a x+b y=c$

We begin by assuming $(a, b)=1$.
Since $1 \mid c$ for all $c \in \mathbb{Z}$, we are guaranteed the existence of at least one (integral) solution $x=x_{0}, y=y_{0}$.

Suppose $x=x_{1}, y=y_{1}$ is another solution. We then have

$$
\begin{aligned}
& a x_{0}+b y_{0}=c \\
& a x_{1}+b y_{1}=c
\end{aligned}
$$

Subtraction yields

$$
\begin{aligned}
a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)=0 & \Rightarrow a\left(x_{0}-x_{1}\right)=-b\left(y_{0}-y_{1}\right) \\
& \Rightarrow a \mid b\left(y_{0}-y_{1}\right) .
\end{aligned}
$$

Since $(a, b)=1$, Euclid's lemma implies that $a \mid\left(y_{0}-y_{1}\right)$. Write

$$
y_{0}-y_{1}=a k
$$

Then $y_{1}=y_{0}-a k$ and back substitution yields

$$
a\left(x_{0}-x_{1}\right)=-a b k \Rightarrow x_{0}-x_{1}=-b k \quad \Rightarrow \quad x_{1}=x_{0}+b k .
$$

Thus, every solution to $a x+b y=c$ has the form

$$
\begin{aligned}
& x=x_{0}+b k, \\
& y=y_{0}-a k,
\end{aligned}
$$

for some $k \in \mathbb{Z}$.

At the same time, for any $k \in \mathbb{Z}$ we have

$$
a\left(x_{0}+b k\right)+b\left(y_{0}-a k\right)=a x_{0}+b y_{0}+a b k-a b k=c+0=c .
$$

Combining this with our earlier work, we have proven:

Theorem 2

Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. If $(a, b)=1$, then the set of solutions to the Diophantine equation $a x+b y=c$ is given by

$$
\begin{aligned}
& x=r c+b k, \\
& y=s c-a k,
\end{aligned}
$$

where $k \in \mathbb{Z}$ is arbitrary and r, s satisfy $a r+b s=1$.

Examples

Example 2 (Continued)

Finish solving $3 x+5 y=7$.
Solution. It's easy to note that $2 \cdot 3+(-1) 5=1$.

So we may take $r=2$ and $s=-1$.

Thus the general solution is given by

$$
\begin{gathered}
x=14+5 k \\
y=-7-3 k
\end{gathered}
$$

with $k \in \mathbb{Z}$.

Example 3

Describe the set of solutions to the Diophantine equation $313 x+510 y=2$.

Solution. If we apply the Euclidean algorithm, it takes 8 divisions to determine that $(313,510)=1$.

The first 7 quotients are $q=1,1,1,1,2,3,5$, and multiplication of the associated matrices $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right)$ (in the opposite order) yields the matrix

$$
\left(\begin{array}{cc}
* & * \\
143 & -233
\end{array}\right) .
$$

Thus

$$
-233 \cdot 313+143 \cdot 510=1
$$

So we may take $r=-233$ and $s=143$.

Therefore the general solution to $313 x+510 y=2$ is given by

$$
\begin{aligned}
& x=2 \cdot(-233)+510 k=-466+510 k \\
& y=2 \cdot 143-313 k=286-313 k
\end{aligned}
$$

where $k \in \mathbb{Z}$ is arbitrary.

Solving $a x+b y=c$ in General

Now let $a, b, c \in \mathbb{Z}$ (with $a, b \neq 0)$ be arbitrary integers satisfying $(a, b) \mid c$. The Diophantine equation

$$
a x+b y=c
$$

is then equivalent to the equation

$$
\frac{a}{(a, b)} x+\frac{b}{(a, b)} y=\frac{c}{(a, b)}
$$

Since

$$
\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right)=1
$$

the latter equation can be solved using our previous result.

We write

$$
\frac{a}{(a, b)} r+\frac{b}{(a, b)} s=1 \quad \text { or } \quad a r+b s=(a, b)
$$

and set

$$
\begin{aligned}
& x=r \frac{c}{(a, b)}+\frac{b}{(a, b)} k \\
& y=s \frac{c}{(a, b)}-\frac{a}{(a, b)} k
\end{aligned}
$$

with $k \in \mathbb{Z}$.

We've now completely solved the Diophantine $a x+b y=c$.

Summary

Theorem 3

Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. The Diophantine equation

$$
a x+b y=c
$$

can be solved if and only if $(a, b) \mid c$. In this case, the set of solutions is given by

$$
\begin{aligned}
& x=r \frac{c}{(a, b)}+\frac{b}{(a, b)} k \\
& y=s \frac{c}{(a, b)}-\frac{a}{(a, b)} k
\end{aligned}
$$

where $k \in \mathbb{Z}$ is arbitrary and $r, s \in \mathbb{Z}$ satisfy $r a+s b=(a, b)$.
Because we can compute r and s from the EA, we can completely describe the solutions to any given linear Diophantine equation.

Example 4

The neighborhood theater charges $\$ 1.80$ for adult admissions and $\$.75$ for children. On a particular evening the total receipts were \$90. Assuming that more adults than children were present, how many people attended?

Solution. Let x be the number of adults who attended and y be the number of children.

We need to solve the Diophantine equation

$$
180 x+75 y=9000
$$

in nonnegative integers $x>y$.

The EA gives $(75,180)=15$ in three steps, and we find that

$$
5 \cdot 75+(-2) 180=15
$$

So the general solution is given by

$$
\begin{aligned}
& x=-2 \cdot \frac{9000}{15}+\frac{75}{15} k=-1200+5 k \geq 0 \\
& y=5 \cdot \frac{9000}{15}-\frac{180}{15} k=3000-12 k \geq 0
\end{aligned}
$$

Putting the two inequalities together yields

$$
240 \leq k \leq 250
$$

But we also require that $x>y$:
$-1200+5 k>3000-12 k \Leftrightarrow 17 k>4200 \Leftrightarrow k>\frac{4200}{17}>247.05$.

Together with our earlier inequalities we obtain

$$
248 \leq k \leq 250
$$

This means $k=248,249$ or 250 . Thus the possible solutions are

$$
\begin{array}{ll}
x=40, & y=24, \\
x=45, & y=12, \\
x=50, & y=0
\end{array}
$$

