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Introduction

Today we will finally prove the Fundamental Theorem of

Arithmetic: every natural number n ≥ 2 can be written uniquely as
a product of prime numbers.

We will first define the term “prime,” then deduce two important
properties of prime numbers.

We will use mathematical induction to prove the existence of prime
factorizations, and Euclid’s lemma to prove their uniqueness.
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Prime Numbers

Definition

A natural number p ≥ 2 is called prime if its only (positive)
divisors are 1 and p.

Examples.

2 is the smallest (and only even) prime number.

The first few primes numbers are 2, 3, 5, 7, 11, 13, 17, 19, . . ..

6 is not prime since 2|6 and 2 6= 1, 6.

The unit 1 is not prime since 1 < 2.
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Definition

A natural number n ≥ 2 is called composite if it is not prime.

Negating the definition of “prime” we find that

n is composite ⇔ n = ab with a, b ≥ 2.

Examples.

Since 15 = 3 · 5, 15 is composite.

Since 143 = 11 · 13, 143 is composite.
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The prime numbers are the “atoms” of multiplicative arithmetic:
they cannot be (multiplicatively) decomposed in any nontrivial way.

In ring-theoretic parlance, the primes in Z are “irreducible.”

If we apply Euclid’s lemma, we find that primes enjoy another
important property.

Lemma 1

Let p ∈ N be a prime number and let a, b ∈ Z be arbitrary. If p|ab,
then p|a or p|b.

Remark. Ring-theoretically this result says that prime numbers are
truly “prime.”
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Before we prove Lemma 1 we make the following observation.

If p is prime and a ∈ Z,then

(p, a) =

{

p if p|a,
1 otherwise,

since the only (positive) divisors of p are 1 and p.

Proof of Lemma 1. Suppose p|ab. If p|a, we’re done.

So we may assume p ∤ a, in which case (p, a) = 1, by the
observation.

Since p|ab and (p, a) = 1, Euclid’s lemma implies that p|b. .
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The atomic nature of primes immediately yields the first half of the
Fundamental Theorem.

Lemma 2

Let n ∈ N. If n ≥ 2, then n is either prime or a product of prime

numbers.

Remarks.

We frequently regard a single prime p as the “product” of the
single factor p.

We can then restate the lemma with the conclusion “n is a
product of prime numbers.”
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Proof of Lemma 2. We proceed by strong induction on n.

Since n = 2 is prime, this establishes our base case.

Now let n > 2 and suppose we have proven that every natural
number 2 ≤ k < n is a product of prime numbers.

If n is prime, we are finished. Otherwise, n = ab with 2 ≤ a, b < n.

By the inductive hypothesis, a and b are products of prime
numbers.
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It follows that n = ab is also a product of primes.

This completes the induction and finishes the proof.

Remarks.

The proof we have given is non-constructive: it establishes
existence, but does not give an algorithm for determining
prime factorizations.

The difficulty of finding prime factorizations is what makes
many modern cryptographic protocols (such as RSA) secure.
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We are now ready to state and prove our main result.

Theorem 1

Let n ∈ N, n ≥ 2. Then, up to the order of the factors, n can be

expressed as the product of prime numbers in exactly one way.

Proof. Let n ∈ N with n ≥ 2. According to Lemma 2, we can write

n = p1p2 · · · pr

for some r ∈ N and prime numbers pi . Suppose we can also write

n = q1q2 · · · qs

with s ∈ N and qi prime.
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Since p1p2 · · · pr = n = q1q2 · · · qs ,

q1|p1p2 · · · pr .

Since q1 is prime, Lemma 1 implies that q1|pj for some j .

But pj is prime, so its only divisors are 1 and pj . Since q1 6= 1, it
must be that

q1 = pj .

If we reorder the pi we can assume that j = 1. We therefore have

q1q2 · · · qs = p1p2 · · · pr = q1p2 · · · pr .
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Cancelling q1 from both sides we are left with

q2 · · · qs = p2 · · · pr .

Repeating this argument, we can (after possibly reordering)
successively cancel q2 = p2, q3 = p3, . . ..

If r > s we would be left with

1 = ps+1 · · · pr ,

which is impossible since pi > 1 for all i . We have a similar
problem if r < s.

So we must have r = s and pi = qi for all i (after reordering).
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As a consequence of the FTA we prove:

Theorem 2 (Euclid)

There are infinitely many prime numbers.

Proof. We argue by contradiction.Assume there are only finitely
many prime numbers:

p1, p2, . . . , pr .

Let n = p1p2 · · · pr + 1 ∈ N.

According to the FTA, n is a product of prime numbers. In
particular, it is divisible by some pj .

It follows that
pj |n − p1p2 · · · pr = 1,

which implies pj = 1, a contradiction.
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Remarks

Given n ≥ 2, it can be convenient to group any repeated
primes in its factorization, and write

n = pa11 pa22 · · · parr ,

with pi distinct primes and ai ≥ 1 for all i . This is the
canonical form of n, and is unique by the FTA.

Euler showed that the infinitude of primes also follows from
the FTA and the divergence of the harmonic series

∞
∑

n=1

1

n
,

thereby initiating the field of analytic number theory.
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The distribution of the prime numbers has fascinated number
theorists for centuries. Let

π(x) = #{p |p ≤ x and p is prime},

the number of primes up to x .

First conjectured by Legendre, Gauss, Dirichlet and others,
the Prime Number Theorem (PNT) asserts that π(x) satisfies
the asymptotic relationship

lim
x→∞

π(x)

x/ log x
= 1.

Using ideas of Riemann, the PNT was first proven
independently in 1896 by Hadamard and de la Vallée Poussin.
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Applications

Using the FTA we can establish the following fact.

Theorem 3

Let a ∈ N, a ≥ 2. If a is not a perfect square, then
√
a is irrational.

We will require the following lemma.

Lemma 3

Let a ∈ N, a ≥ 2. Write a in its canonical form:

a = pa11 pa22 · · · parr ,

with each pi distinct and ai ≥ 1. Then a is a perfect square if and

only if every ai is even.
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Proof. If a = b2, write b in canonical form:

b = p
c1
1 p

c2
2 · · · pcrr ,

with each pi distinct and cr ≥ 1. Then

a = b2 = p2c11 p2c22 · · · p2crr .

By the FTA this must be the canonical form of a, and clearly 2ci is
even for all i .

The reverse implication is an easy exercise.
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Theorem 3

Proof of Theorem 3. We argue by contradiction. Assume that a is
not a perfect square and that

√
a =

s

t

with s, t,∈ N.

Clearing the denominator and squaring yields

t2a = s2.

We now express a, s, t in their canonical forms. By allowing the
exponents to be 0, if necessary, we may assume the primes
occurring in all three are the same.
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So we may write
a = pa11 pa22 · · · parr ,

s = p
s1
1 p

s2
2 · · · psrr ,

t = pt11 p
t2
2 · · · ptrr ,

with each pi distinct and every exponent nonnegative.

Because a is not a perfect square, aj must be odd for some j , by
Lemma 3.

The equation t2a = s2 implies

p
a1+2t1
1 p

a2+2t2
2 · · · par+2tr

r = p
2s1
1 p

2s2
2 · · · p2srr .

Uniqueness in the FTA implies that ai + 2ti = 2si for all i .
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That is,
ai = 2si − 2ti = 2(si − ti) ⇒ ai is even

for all i .

This contradicts the fact that aj is odd, and completes the
proof.

Remarks.

Although
√
a is irrational, it is still algebraic: it is the root of

the polynomial X 2 − a, which has rational coefficients.

The systematic study of algebraic numbers falls under the
purview of algebraic number theory.
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