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Introduction

The Fundamental Theorem of Arithmetic (FTA) completely
describes the multiplicative structure of N.

By relaxing the uniqueness requirement of the FTA somewhat, we
can the connect (modified) canonical forms of integers to
divisibility theory.

This will yield (modified) canonical expressions for the GCD and
LCM, and related them to each other.
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Canonical Forms and Divisibility

Recall that the canonical form of a natural number a ≥ 2 is

a = pa11 pa22 · · · parr ,

in which each pi is distinct and ai ∈ N for all i .

The FTA guarantees that canonical forms exist and are unique.

It can be convenient to allow ai ∈ N0, although this changes the
statement of the FTA somewhat.

For instance 60 has the modified canonical forms

60 = 22 · 3 · 5 = 22 · 3 · 5 · 70 = 22 · 3 · 5 · 130 · 190.
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Now even 1 has prime factorizations:

1 = 20 = 30 = 50 · 70 · 130.

Theorem 1 (FTA for Modified Canonical Forms)

Every n ∈ N can be expressed in the form

n = p
a1
1 p

a2
2 · · · parr ,

where the pi are distinct primes and ai ∈ N0. The primes and

exponents for which ai > 0 are unique.

The advantage of modified canonical forms is that they allow us to
express any given (finite) set of natural numbers using the same
collection of primes.
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As an application of this idea, let a ∈ N and suppose d ∈ N divides
a.

If a prime p divides d , then it divides a as well, by transitivity of
divisibility.

Therefore the primes occurring in the “true” canonical form of d
must be among those of a.

So if we write
a = pa11 pa22 · · · parr

with distinct pi and ai ≥ 0, we can also write

d = pd11 pd22 · · · pdrr ,

but with di ≥ 0.
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Write a = de with e ∈ N. Since e|a as well, similar remarks apply
to e:

e = pe11 pe22 · · · perr

with ei ≥ 0.

We therefore have

pa11 pa22 · · · parr = a = de = pd1+e1
1 pd2+e2

2 · · · pdr+er
r .

If ai > 0 or di + ei > 0, then uniqueness in the modified FTA imply
that ai = di + ei . Otherwise ai = di + ei = 0.

So, in any case, ai = di + ei . Since ai , di , ei ∈ N0, this implies that

ai ≥ di for all i .
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Conversely, if ai ≥ di for all i , then ai − di ∈ N0 so that

e = pa1−d1
1 pa2−d2

2 · · · par−dr
r ∈ N,

and

de = p
d1+(a1−d1)
1 p

d2(a2−d2)
2 · · · p

dr+(ar−dr )
r = pa11 pa22 · · · parr = a.

That is, we have constructed a divisor of a from the exponents di .

Theorem 2

If a ∈ N has the modified canonical form a = pa11 pa22 · · · parr , then

d ∈ N divides a if and only if d = p
d1
1 p

d2
2 · · · pdrr with 0 ≤ di ≤ ai

for all i .

Daileda Primes and Divisibility



We now have a complete description of the set of (positive)
divisors of a in terms of its canonical form.

Example 1

Determine all the divisors of 2600.

Solution. A little work gives the canonical form

2600 = 23 · 52 · 13.

So the divisors of 2600 have the form

2a · 5b · 13c ,

where 0 ≤ a ≤ 3, 0 ≤ b ≤ 2 and 0 ≤ c ≤ 1.
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So we have 4 · 3 · 2 = 24 divisors:

1 2 22 = 4
23 = 8 5 2 · 5 = 10
22 · 5 = 20 23 · 5 = 40 52 = 25
2 · 52 = 50 22 · 52 = 100 23 · 52 = 200
13 2 · 13 = 26 22 · 13 = 52
23 · 13 = 104 5 · 13 = 65 2 · 5 · 13 = 130
22 · 5 · 13 = 260 23 · 5 · 13 = 520 52 · 13 = 325
2 · 52 · 13 = 650 22 · 52 · 13 = 1300 23 · 52 · 13 = 2600
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Remarks

Taking the notion of modified canonical form to its extreme, we
find that we can write any a ∈ N uniquely in the form

a =
∏

p

pap ,

where the product runs over all the prime numbers, ap ∈ N0 for all
p, and only finitely many ap 6= 0.

The map a 7→ (ap)p carrying each natural number to its sequence
of exponents yields a bijection

E : N →
∑

p

N0

of N with the direct sum of a countable number of copies of N0.
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Because multiplication of natural numbers adds the exponents in
their modified canonical forms, we find that E is, in fact, an
isomorphism (multiplicative to additive) of monoids:

E (1) = (0, 0, 0, . . .),

E (ab) = (ap + bp)p = (ap)p + (bp)p = E (a) + E (b).

So the multiplicative structure of N is identical to the additive

structure of
∑

p N0.

For instance, the partial order a|b on N immediately translates to a
partial order on

∑
p N0:

(ap)p � (bp)p ⇔ ap ≤ bp for all primes p.
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Counting Divisors

Theorem 2 has the following immediate consequence.

Corollary 1

Let a ∈ N and write it in modified canonical form

a = pa11 pa22 · · · parr . Then a has exactly

(a1 + 1)(a2 + 1) · · · (ar + 1)

positive divisors.

Remark. Note that the inclusion of extraneous primes in the
modified canonical form doesn’t change the value of the product,
since 0 + 1 = 1.

Daileda Primes and Divisibility



Proof. Theorem 2 tells us that the divisors of a are given by

d = pd11 pd22 · · · pdrr ,

with 0 ≤ di ≤ ai for all i .

Since there are ai + 1 choices for di , for each i , the result
follows.

Example 2

How many positive divisors does 1484325 have?

Solution. Since 1484325 = 34 · 52 · 733, there are exactly
5 · 3 · 2 = 30 positive divisors.
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Canonical Forms and GCDs

Let a, b ∈ N and write their modified canonical forms as

a = pa11 pa22 · · · parr ,

b = p
b1
1 p

b2
2 · · · pbrr .

According to Theorem 2, d ∈ N is a common divisor of a and b if
and only if d = pd11 pd22 · · · pdrr with

0 ≤ di ≤ ai and 0 ≤ di ≤ bi ⇔ 0 ≤ di ≤ min{ai , bi}.

for all i . It follows at once that

(a, b) = p
min{a1,b1}
1 p

min{a2,b2}
2 · · · p

min{ar ,br}
r
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Remark. This result is primarily of theoretical importance. To
actually compute the GCD it is much more efficient to use the EA.

Example 3

Use canonical forms to compute (7181350, 1292870).

Solution. We have

7181350 = 2 · 52 · 112 · 1187 = 21 · 52 · 112 · 11871 · 1292870,

1292870 = 2 · 5 · 129287 = 21 · 51 · 110 · 11870 · 1292871.

Thus

(7181350, 1292870) = 21 · 51 · 110 · 11870 · 1292870 = 10.
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Least Common Multiples

Dual to the notion of greatest common divisor is the least common
multiple.

Let a, b ∈ N. We define their least common multiple (LCM) to be
the smallest m ∈ N so that

a|m and b|m.

We denote the LCM of a and b by [a, b].

Because a|ab and b|ab, the [a, b] exists by the Well-Ordering
Principle.

We can express the LCM in terms of canonical forms, and will use
this to connect it to the GCD.
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Write a, b and [a, b] in modified canonical form:

a = pa11 pa22 · · · parr ,

b = pb11 pb22 · · · pbrr ,

[a, b] = pc11 pc22 · · · pcrr .

Since a|[a, b] and b|[a, b], Theorem 2 tells us that

ai ≤ ci and bi ≤ ci ⇔ ci ≥ max{ai , bi}

for all i . So, to make [a, b] as small as possible, it must be that

ci = max{ai , bi}

for all i .
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That is,

[a, b] = p
max{a1,b1}
1 p

max{a2,b2}
2 · · · p

max{ar ,br}
r .

As with the GCD, this isn’t the best way to find the LCM. It’s
better to go through the GCD via the EA.

Notice that for all i we have

ai + bi = max{ai , bi}+min{ai , bi}.

It immediately follows that

ab = (a, b)[a, b].
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Example 4

Compute [9780, 9234].

Solution. It takes 7 divisions in the EA to find that

(9780, 9234) = 6.

Thus

[9780, 9234] =
9780 · 9234

(9780, 9234)
=

90308520

6
= 15051420.
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