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Introduction

The definition of a prime number is simple and intuitive.

And, with the possible exception of Euclid’s Lemma, the proof of
the FTA is also relatively straightforward.

Despite this, the prime numbers themselves are elusive. There are
many easily observed patterns that defy explanation.

Today we will take a tour of results concerning the primes: their
distribution, their spacing, and special forms that occur.
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Recall the prime counting function:

π(x) = #{p ≤ x | p is prime}.

The infinitude of primes (due to Euclid) can be rephrased as

lim
x→∞

π(x) = ∞.

A more precise result is the Prime Number Theorem (PNT):

lim
x→∞

π(x)

x/ log x
= 1.

Conjectured by Gauss and others around 1800, it wasn’t until 1896
that Hadamard and de la Vallée Poussin (independently) succeeded
in proving the PNT.
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Although it has discontinuities at every prime, on large scales the
graph of π(x) appears remarkably smooth.

π(x) for 1 ≤ x ≤ 100 π(x) for 1 ≤ x ≤ 105
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The Riemann Hypothesis

The Riemann Zeta Function is defined by

ζ(s) =

∞
∑

n=1

1

ns

for Re(s) > 1.

ζ(s) can be immediately connected to the prime numbers via its
Euler product expansion,

ζ(s) =
∏

p

(

1−
1

ps

)−1

,

which follows from the FTA.
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ζ(s) can be analytically continued to C \ {1}, and it satisfies a
functional equation relating its values at s and 1− s.

The behavior of the zeros of ζ(s) in the complex plane influence
the behavior of the primes.

Indeed, one has the explicit formula

∑

pm≤x

log p = x −
∑

ρ

xρ

ρ
− log 2π −

1

2
log(1− x−2),

where the sum on the left runs over all the prime powers pm up to
x , and the sum on the right runs over the zeros ρ of ζ(s) in the
critical strip 0 < Re(s) < 1.

The Riemann hypothesis asserts that Re(ρ) = 1
2
for all ρ, and gives

very sharp estimates on the error term in the PNT.
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The are a number of more “refined” questions one can pose about
the distribution of the primes.

Theorem 1 (Bertrand’s Postulate)

For any n ≥ 2, there is a prime p satisfying n ≤ p < 2n.

Remarks.

Conjectured by Bertrand in 1845, this result was first proven
by Chebyshev in 1852.

Bertrand’s Postulate gives a (rather weak) bound on the
growth of the nth prime number: pn < 2n.

Ramanujan and Erdős gave simpler proofs in the twentieth
century.
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Distances Between Primes

The main questions here are:

How close together can two (successive) primes be?

How often?

Because every prime p > 2 is odd, we must have

pn+1 − pn ≥ 2

for n ≥ 2.

The Twin Primes Conjecture asserts that pn+1 − pn = 2 infinitely
often.
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If we let
π2(x) = {p ≤ x | p and p + 2 are prime},

the Hardy-Littlewood conjecture is the asymptotic

π2(x) ∼ C

∫ x

2

dt

(log t)2
,

for a certain constant C .

The best known result to date (due to Zhang, Tao and others) is:

Theorem 2

There exist infinitely many n for which

pn+1 − pn ≤ 246.
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A related question is how far apart successive primes can be. Here
there is a definitive (and elementary) answer.

Theorem 3

Let n ∈ N. Then there is a k so that

pk+1 − pk ≥ n.

Proof. This is equivalent to the assertion that, given n ∈ N, there
exist n consecutive composite numbers.

Let n ∈ N and consider the n consecutive integers

(n + 1)! + 2, (n + 1)! + 3, (n + 1)! + 4, . . . , (n + 1)! + (n + 1).
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Since k divides both (n + 1)! and k , it divides (n + 1)! + k .

Since 1 < k < (n + 1)! + k , this proves each (n + 1)! + k is
composite.

Remark. Notice that we have two contrasting situations
concerning gaps between successive primes:

pn+1 − pn is (conjecturally) as small as possible infinitely
often.

pn+1 − pn can be made arbitrarily large.
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Primes of Special Form

Question. Given a function f : N → N, how often is f (n) prime?

Examples.

Primes of the form 2n − 1 (i.e. we take f (n) = 2n − 1) are
called Mersenne primes.

Integers of the form 22
n

+ 1 are called Fermat numbers.

The largest explicitly known prime number is a Mersenne prime:

p = 277232917 − 1.

It is not hard to prove:

Theorem 4

If 2n − 1 is prime, then n is prime.
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So all Mersenne primes have prime exponents.

While this narrows down the candidates for Mersenne primes, it
doesn’t guarantee their existence.

Conjecture. There are infinitely many Mersenne primes.

Concerning the Fermat numbers:

Fermat conjectured every integer of the form 22
n

+ 1 is prime.

22
n

+ 1 is prime for n = 0, 1, 2, 3, 4.

22
n

+ 1 is known to be composite for 5 ≤ n ≤ 32.
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Primes Given By Polynomials

Question: Given a polynomial f (X ) ∈ Z[X ], how often is f (n)
prime?

Restrictions need to be placed on f (X ) in order to avoid trivial
results:

f (X ) should be irreducible.

The coefficients of f (X ) should be relatively prime.

Even with these restrictions, however, one can show that:

Theorem 5

If f (X ) ∈ Z[X ] is nonconstant, then there exist infinitely many
n ∈ N for which f (n) is composite.

An easy proof can be given using modular arithmetic.
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If deg f > 1, not much is known, even in very simple cases. A
famous example is:

Conjecture. There are infinitely many primes of the form n2 + 1.

On the other hand, if f (n) = an+ b (i.e. f is linear), a great deal
can be said.

Definition

An arithmetic progression is a set of the form

{an + b | n ∈ Z} = {. . . , b − a, b, b + a, b + 2a, b + 3a, . . .},

where a, b ∈ Z and a 6= 0.
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Using tools from analysis, in 1837 Dirichlet proved:

Theorem 6 (Dirichlet’s Theorem on Primes in Progressions)

Every arithmetic progression with (a, b) = 1 contains infinitely
many primes.

Equivalently, if (a, b) = 1, then the polynomial f (n) = an + b is
prime infinitely often.

The PNT also generalizes to primes in progressions. Specifically, let

πa,b(x) = #{p ≤ x | p is prime and p = an + b}.

Then it can be shown that

lim
x→∞

πa,b(x)

x/ log x
=

1

ϕ(a)
,

where ϕ denotes Euler’s totient function.
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There is no known purely arithmetic proof of Dirichlet’s theorem,
in general.

In certain special cases, however, it can be established by
generalizing Euclid’s proof of the infinitude of primes.

Note that every odd prime necessarily has one of the forms 4n + 1
or 4n + 3, by the division algorithm.

Let’s consider the case of primes of the form 4n + 3.
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Lemma 1

If a, b ∈ N both have the form 4n + 1, then so does ab.

Proof. Write a = 4m + 1, b = 4n + 1 with m, n ∈ Z. Then

ab = (4m+1)(4n+1) = 16mn+4m+4n+1 = 4(4mn+m+n)+1.

Since 4mn +m + n ∈ Z, this proves the result.

Theorem 7

There are infinitely many primes of the form 4n + 3.

Proof. Suppose, for the sake of contradiction, that there are only
finitely many such primes:

p1, p2, . . . , pn.

Let
N = 4p1p2 · · · pn − 1.
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Notice that N has the form 4n + 3:

N = 4p1p2 · · · pn − 1 = 4(p1p2 · · · pn − 1) + 3.

Since N is odd, every one of its prime factors has the form 4n + 1
or 4n + 3.

If every prime factor of N had the form 4n + 1, so would N, by the
lemma.

So there is a prime of the form 4n + 3 that divides N.

That is, pi |N for some i . But then

pi |N − 4p1p2 · · · pn = −1,

which is impossible.
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Primes Represented by Quadratic Forms

Definition

A quadratic form (in two variables) is a homogeneous quadratic
polynomial Q(x , y) = ax2 + bxy + cy2 with a, b, c ∈ Z.

For example, the simplest quadratic form is Q(x , y) = x2 + y2.

Definition

Let Q(x , y) be a quadratic form and n ∈ Z. We say that Q(x , y)
represents n if there exist a, b ∈ Z so that Q(a, b) = n.

Question. Given a quadratic form Q(x , y), which primes does it
represent?
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Theorem 8 (Fermat)

A prime p is represented by the quadratic form x2 + y2 if and only
if p has the form 4n + 1.

For example, 29 = 4 · 7 + 1 and we have

29 = 22 + 52.

Along the same lines we have the following result, originally
conjectured by Euler:

Theorem 9

A prime p is represented by the quadratic form x2 + 5y2 if and
only if p has the form 20n + 1 or 20n + 9.
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For instance, 29 = 20 · 1 + 9 and we have

29 = 32 + 5 · 22.

The question of the representability of primes by quadratic forms
of the type x2 + ny2 has been completely settled, and requires
deep ideas from algebraic number theory.
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