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Introduction

Modular arithmetic is the “arithmetic of remainders.”

The somewhat surprising fact is that modular arithmetic obeys
most of the same laws that ordinary arithmetic does.

This explains, for instance, homework exercise 1.1.4 on the
associativity of remainders.

We will later see that because of this the set of equivalence classes
under congruence modulo n can be given the structure of a ring.
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Congruences

Definition

Let n ∈ N and a, b ∈ Z. We say that a is congruent to b modulo
n, denoted a ≡ b (mod n), provided n|a − b.

Examples.

We have: 7 ≡ 22 (mod 5), −4 ≡ 3 (mod 7), 19 ≡ 119
(mod 100), 37 ≡ 1 (mod 4).

For any a, b ∈ Z: a ≡ b (mod 1).

Notice that:

a ≡ b (mod n) ⇔ a − b = nk ⇔ a = b + nk

for some k ∈ Z.
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Our first result concerning congruences should be familiar from
Intro to Abstract.

Theorem 1

Let n ∈ N. Then congruence modulo n is an equivalence relation
on Z.

Proof (Sketch). Let a, b, c ∈ Z.

Reflexivity: Since n|0, a ≡ a (mod n).

Symmetry: If n|a − b, then n| − (a − b) = b − a. So
a ≡ b (mod n) implies b ≡ a (mod n).

Transitivity: If n|a − b and n|b − c , then
n|(a − b) + (b − c) = a − c . Thus a ≡ b (mod n) and
b ≡ c (mod n) together imply that a ≡ c (mod n).
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Recall that every equivalence relation on a set S partitions that set
into disjoint subsets (the equivalence classes).

Given n ∈ N, an equivalence class under congruence modulo n is
called a congruence class.

We will denote the congruence class of a ∈ Z by a or a + nZ
(whichever is more convenient):

a = a+ nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nk | k ∈ Z}.

We will denote the collection of congruence classes by Z/nZ:

Z/nZ = {a + nZ | a ∈ Z}.
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Before we give more examples, it will be convenient to give a
complete description of Z/nZ.

Theorem 2

Let n ∈ N and a, b ∈ Z. Then a ≡ b (mod n) iff a and b leave the
same remainder when divided by n. In particular, every a is
congruent to its remainder when divided by n, and no two distinct
remainders are congruent modulo n. Therefore the (distinct)
elements of Z/nZ are

0 + nZ, 1 + nZ, 2 + nZ, . . . , (n − 1) + nZ.

Remarks. We have the following immediate corollaries.

a ≡ 0 (mod n) iff n|a.
∣

∣Z/nZ
∣

∣ = n.
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Proof of Theorem 2. Write a = q1n+ r1, b = q2n+ r2, with
0 ≤ ri < n.

Then a − b = (q1n + r1)− (q2n+ r2) = (q1 − q2)n + (r1 − r2).

If a ≡ b (mod n), then n|(a − b) and we find that

n|(a − b)− (q1 − q2)n = r1 − r2.

But |r1 − r2| < n, so this can only occur if r1 − r2 = 0 or r1 = r2.

Conversely, if r1 = r2, then a − b = (q1 − q2)n, so that n|a− b,
and a ≡ b (mod n).

The remaining statements follow at once.

Daileda Congruences



Examples

If n = 2, the only remainders are 0 and 1. According to
Theorem 2, we find that a ≡ b (mod 2) iff a and b are both
even or both odd. In this case we say a and b have the same
parity.

Every integer is congruent to either 0, 1 or 2 modulo 3 (and
these options are mutually exclusive).

Every integer is congruent to (exactly) one of the decimal
digits modulo 10. In fact, since every integer whose decimal
expansion ends in 0 is divisible by 10, every integer is
congruent to its final digit modulo 10.
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Let n ∈ N. Theorem 2 tells us that there are exactly n congruence
classes modulo n.

A set containing exactly one integer from each congruence class is
called a complete system of residues modulo n.

Examples.

The set {0, 1, 2, . . . , n − 1} of remainders is a complete
system of residues modulo n, by Theorem 2.

The set {0,±1,±2} is a complete system of residues
modulo 5.

More generally, the set {a ∈ Z : |a| ≤ n/2} \ {−n/2} is a
complete system of residues modulo n.
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Modular Arithmetic

One of the facts that makes congruences so useful in arithmetic is
that they respect the operations of addition and multiplication.

Theorem 3

Let n ∈ N and a, b, c , d ∈ Z. If a ≡ b (mod n) and
c ≡ d (mod n), then:

1 a + c ≡ b + d (mod n);

2 ac ≡ bd (mod n).

Proof. Write a − b = nk and c − d = nℓ with k , ℓ ∈ Z. Then

(a + c)− (b + d) = (a − b) + (c − d) = nk + nℓ = n(k + ℓ),

so that a + c ≡ b + d (mod n).
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The proof that multiplication is respected is only slightly less
straightforward:

ac − bd = ac − ad + ad − bd = a(c − d) + (a − b)d

= anℓ+ nkd = n(aℓ+ kd),

so that ac ≡ bd (mod n).

Corollary 1

Let n ∈ N and a, b ∈ Z. If a ≡ b (mod n), then
ak ≡ bk (mod n) for all k ∈ N.

Proof. Use part 2 of Theorem 3 and induct on k .
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Examples

Example 1

Prove that if a ∈ Z, then a2 ≡ 0, 1 (mod 4).

Solution. We know that a is equivalent to one of 0, 1, 2 or 3
modulo 4, so we simply check each case:

a ≡ 0 (mod 4) ⇒ a2 ≡ 02 ≡ 0 (mod 4),

a ≡ 1 (mod 4) ⇒ a2 ≡ 12 ≡ 1 (mod 4),

a ≡ 2 (mod 4) ⇒ a2 ≡ 22 ≡ 0 (mod 4),

a ≡ 3 (mod 4) ⇒ a2 ≡ 32 ≡ 1 (mod 4).
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Example 2

Prove that 53103 + 10353 is divisible by 39.

Solution. Notice that

53 ≡ 14 ≡ −25 (mod 39),

103 ≡ 25 (mod 39),

so that

53103 + 10353 ≡ (−25)103 + 2553 ≡ − 5206 + 5106 (mod 39).

Now we compute the first few powers of 5 modulo 39:

52 ≡ 25 (mod 39), 53 = 125 ≡ 8 (mod 39), 54 ≡ 5·8 ≡ 1 (mod 39).
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Now divide the exponents 206 and 106 by 4:

−5206 + 5106 ≡ − 54·51+2 + 54·26+2 (mod 39)

≡ −(54)5152 + (54)2652 (mod 39)

≡ −151 · 25 + 126 · 25 (mod 39)

≡ −25 + 25 ≡ 0 (mod 39).

Remark. When computing the remainder when ak is divided by n,
especially by hand, it is usually best to:

1 Replace a by its remainder when divided by n.

2 Recursively find the remainders when a2, a3, a4, . . . are divided
by n, by multiplying the preceding remainder by a at each
stage.

Properties of modular arithmetic ensure that this process yields the
correct result.
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Cancellation in Modular Arithmetic

Because Z is a domain, we have the cancellation law

ab = ac and a 6= 0 ⇒ b = c .

This law fails for modular arithmetic. For instance, we have

2 · 3 ≡ 2 · 8 (mod 10) and 2 6≡ 0 (mod 10),

yet 3 6≡ 8 (mod 10).

The problem is that the common factor 2 and the modulus 10 are
not relatively prime.

If we take the GCD into account, we get valid cancellation laws for
modular arithmetic.
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Lemma 1

Let n, k ∈ N and a, b ∈ Z. Then

a ≡ b (mod n) ⇔ ak ≡ bk (mod nk).

Proof. If a ≡ b (mod n), then a − b = nℓ for some ℓ ∈ Z.

Multiplying through by k yields ak − bk = nkℓ, so that
ak ≡ bk (mod nk).

Conversely, if ak ≡ bk (mod nk), then ak − bk = nkℓ for some
ℓ ∈ Z.

That is, k(a − b) = knℓ. Since k 6= 0, it can be cancelled, yielding
a − b = nℓ, and hence a ≡ b (mod n).
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Euclid’s lemma yields the following useful result.

Lemma 2

Let n ∈ N and a, b, c ∈ Z. If (c , n) = 1, then

ac ≡ bc (mod n) ⇔ a ≡ b (mod n).

Proof. If ac ≡ bc (mod n), then n|ac − bc = (a − b)c .

Since (c , n) = 1, Euclid’s lemma implies that n|a− b, which means
a ≡ b (mod n).

The reverse implication follows immediately from part 2 of
Theorem 3.
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Putting our lemmas together we obtain:

Theorem 4

Let n ∈ N and a, b, c ∈ Z. Then

ac ≡ bc (mod n) ⇔ a ≡ b (mod n/(c , n)).

Proof. If we write c = c ′(c , n) and n = n′(c , n), then we know
that (c ′, n′) = 1.

By lemmas 1 and 2 we have

ac ≡ bc (mod n) ⇔ ac ′(c , n) ≡ bc ′(c , n) (mod n′(c , n))

⇔ ac ′ ≡ bc ′ (mod n′)

⇔ a ≡ b (mod n′).

Since n′ = n/(c , n), this completes the proof.
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Moral. We can cancel a common factor in an arbitrary congruence
provided we divide the modulus by its GCD with that factor.

Returning to our earlier example, in the congruence

2 · 3 ≡ 2 · 8 (mod 10)

we can cancel the 2 provided we replace 10 with

10

(10, 2)
=

10

2
= 5.

This yields the valid congruence

3 ≡ 8 (mod 5).
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Before we turn to another example, we point out an important
corollary to Theorem 4 (or Lemma 2), which applies whenever the
modulus is prime.

Corollary 2

Let p ∈ N be prime and let a, b, c ∈ Z. If p ∤ c, then

ac ≡ bc (mod p) ⇔ a ≡ b (mod p).

Proof. Because p is prime, p ∤ c implies that (c , p) = 1. The result
follows.
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Example 3

Let n ∈ N. If a1, a2, . . . , an is a complete system of residues
modulo n and (b, n) = 1, prove that ba1, ba2, . . . , ban is also a
complete system of residues modulo n.

Solution. To say that a1, a2, . . . , an form a complete system of
residues modulo n means that

Z/nZ = {a1 + nZ, a2 + nZ, . . . , an + nZ},

and these are all distinct.

Define f : Z/nZ → Z/nZ by f (ai + nZ) = bai + nZ. If we can
show f is a bijection, we are finished.

Because Z/nZ is finite, it is sufficient to show f is injective, by the
pigeon-hole principle.
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So suppose that f (ai + nZ) = f (aj + nZ). Then

bai + nZ = baj + nZ ⇔ bai ≡ baj (mod n)

⇔ ai ≡ aj (mod n)

⇔ ai + nZ = aj + nZ,

where in the second line we have cancelled b in accordance with
Lemma 2.

Hence f is injective, and the proof is complete.

Example. Since 0, 1, 2, 3, 4, 5 form a complete system of residues
modulo 6, and (5, 6) = 1, the integers 0, 5, 10, 15, 20, 25 are also a
complete residue system modulo 6.
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