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Introduction

We usually represent integers as finite strings of decimal digits, e.g.
8906.

This familiar place-value notation is actually shorthand for a sum
involving powers of the base 10:

8906 = 8-10%+9-10°+0-10" +6- 10°.

The use of base 10 representations is convenient, but otherwise
arbitrary.

It is possible to express integers in a similar way using any base
b>1.
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Base b Expansions

Our first goal is to establish the following result on the
representation of integers in terms of powers of b.

Theorem 1
Let b > 1 be an integer. Every n € N can be written uniquely in
the form

n=amb"+ am_1b" L+ -+ ab® + a1b + ao, (1)

with a; € {0,1,2,...,b— 1} for all i and an, # 0.

Remark. The expression (1) is called the base b expansion of n.

Proof. To establish the existence of base b expansions we induct
on n.

If n€{0,1,2,...,b— 1}, then setting ap = n works.
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Now suppose n > b and we have shown that all positive integers
less than n have base b expansions.

Use the division algorithm to write n = bg + r with
re{0,1,2,...,b—1}.

Because n > b we must have g > 1. And since b > 1, we must

have
n—r

b

q= < -<n

o pll ]

So g is a positive integer strictly less than n. By the inductive
hypothesis we can write

q=ayb' +a,_ b+ -+ ab+a

with a; € {0,1,2,...,b—1} and &} # 0.
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We therefore have
n=>bqg+r
= b(apb’ + a1+ fab+ap)
= a)b"t p g, b AP apb o,

which is a base b expansion for n with m=/¢+1, agp = r and
aj=a,_, fori>1.

This completes the induction, and proves that every positive
integer has a base b expansion.

We now prove uniqueness. Suppose that
amb™+am_1b™ 1+ tarb+ag = bl + 1B+ -+ b+ o,
with aj, ¢; € {0,1,...,b—1}, a,, # 0 and ¢, # 0.
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Our first goal is to show that m = /.
Notice that

amb™am_1b™ 1+ +aib+ ag
<(b-1)b"+(b—1)b" 4. 4 (b—1)b+ (b—1)

=(b-1)(b"+b" .-+ b+1)
bm+1_1

— m+1_1 m+1
- b < b

—(b—1)

Furthermore, since ¢, # 0,

bt + b o+ ab+ g > b

Since we have assumed the two expansions agree, we conclude that

< b™l = V<m+1 = (<m.
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By a symmetric argument, we find that m < ¢ as well, and hence
m=/.
Now subtract the second expansion from the first:

(am—Cm)b™+(am—1—Cm-1)b™ *+-+ -+ (a1—c1)b+(ag— by) = 0.

Since |a; — ¢j| < b for all i, we have

|(am_1 — Cm—l) bm_l + -+ (31 — C1)b+ (ao — bo)‘
<(b-1)b" 14 (b—1)b+(b—1)=b"—1,

as above.
This means that
|am — cm|b™ < B — 1,

which is impossible unless a,, = cp.
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Now repeat this argument to obtain ap,—1 = Cm—1, am—2 = Cm—2,
etc. This completes our proof. O

Remarks.

@ We will denote the base b expansion
amb™ + am_1b™ L + - + a1b + ag
by the base b place-value notation
(amam—1---3140)b-

When b = 10 we omit the parentheses.

@ The existence proof above gives a recursive procedure for
computing base b expansions through the division algorithm.
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Find the base 3 expansion of 709.

Solution. We have:

709 =3.236 + 1,

236 =3-78 + 2,
78 =3.26 40,
26=3-8+2,
8=3-2+2,
2=3-0+2.

The remainders give the base 3 expansion:

709 = (222021)3.
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Find the binary (base 2) expansion of 709.

Solution. We have:

700 =2-354+1, 354=2.177 +0,
177 =2-88+1, 88 =244 +0,
44=2.2240, 22=2-11+0,
11=2-5+1, 5=2-2+1,
2=2.1+0, 1=2-0+1.

The remainders give the binary expansion:

709 = (1011000101),
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Repeated Squaring

We can use binary expansions to give an extremely efficient
algorithm for modular exponentiation.

Find the remainder when 579 is divided by 1234.

Solution. The binary expansion 709 = (1011000101), expresses
709 as a sum of powers of 2:

709 = 29 + 27 + 20 4+ 22 + 20,
We now compute the first 9 squares of 5, modulo 1234:
52 = 5 (mod 1234), 52 =25 (mod 1234),

52° = (52)2 = 625 (mod 1234),
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52 = (5%°)? = 6252 = 390625 = 681 (mod 1234),
52 = (52)2 = 6812 = 463761 = 1011 (mod 1234),
52 = (52)2 = 10112 = 1022121 = 369 (mod 1234),
5% = (52)2 = 3697 = 136161 = 421 (mod 1234),
52" = (5%°)2 = 4212 = 177241 = 779 (mod 1234),
52 = (52)2 = 7792 = 606841 = 947 (mod 1234),
52° = (5%°)2 = 947% = 896809 = 925 (mod 1234).
Therefore

709 _ E29427426422420 29 27 26 22 0
5 =5 =5 .5 .52 .5 .5

=025 .779 - 421 - 625 - 5 =[147] (mod 1234).
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Divisibility Tests

Fix a base b > 1 and let d be any positive divisor of b — 1. Then
b=1 (mod d).

Let n € N have the base b expansion (amam—1---a0)p-

Then

n=amb™+am1b™ 1+ -+ aihb+ ag
=apl™ 4+ am_11m T4+ a1 1+ 3 (mod d)
=am+am-1+---a1+a (mod d).

We immediately obtain the following divisibility test.

If n=(amam—1---ao)p and d|b— 1, then d|n if and only if
dlam+am-1+---+ a1+ ap.
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The nontrivial positive divisors of 10 —1 =9 are 3 and 9.

We can therefore test for divisibility by 3 or 9 by summing the
decimal digits of an integer.

For example, if n = 9550684, then
9+5+54+0+6+8+4=37#0 (mod 3),

so that 31 n.

On the other hand, if n = 3788058, then
3+7+8+8+0+54+8=39=0 (mod 3),

so that 3|n (but 91 n).
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Suppose instead that d|b+ 1. Then b= —1 (mod d) so that

(amam_1 s ao)b = ambm + am_lbm_l + -+ alb + ao
=am(—1)" 4+ am_1(—1)" 1 + - + a1(—1) + ag (mod d)

which is the alternating sum of the base b “digits.”

If n=(amam—1---ao)p and d|b+ 1, then d|n if and only if
dl(=1)"am + (=1)" tam_1 + - — a1+ ao.

If b =10, then b+ 1 = 11, so the only nontrivial choice for d is
11. Taking n = 53084471 we find that

5-3+0-8+4—-447-1=0,
and hence 11|n.
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