Base b Representations of Integers

Ryan C. Daileda

Number Theory

Introduction

We usually represent integers as finite strings of decimal digits, e.g. 8906.

This familiar *place-value notation* is actually shorthand for a sum involving powers of the *base* 10:

$$8906 = 8 \cdot 10^3 + 9 \cdot 10^2 + 0 \cdot 10^1 + 6 \cdot 10^0.$$

The use of base 10 representations is convenient, but otherwise arbitrary.

It is possible to express integers in a similar way using *any* base b > 1.

Base b Expansions

Our first goal is to establish the following result on the representation of integers in terms of powers of b.

Theorem 1

Let b > 1 be an integer. Every $n \in \mathbb{N}$ can be written uniquely in the form

$$n = a_m b^m + a_{m-1} b^{m-1} + \dots + a_2 b^2 + a_1 b + a_0,$$
 (1)

with $a_i \in \{0, 1, 2, ..., b-1\}$ for all i and $a_m \neq 0$.

Remark. The expression (1) is called the base b expansion of n.

Proof. To establish the existence of base b expansions we induct on n.

If $n \in \{0, 1, 2, ..., b - 1\}$, then setting $a_0 = n$ works.

Now suppose $n \ge b$ and we have shown that all positive integers less than n have base b expansions.

Use the division algorithm to write n = bq + r with $r \in \{0, 1, 2, \dots, b - 1\}$.

Because $n \ge b$ we must have $q \ge 1$. And since b > 1, we must have

$$q = \frac{n-r}{b} \le \frac{n}{b} < n.$$

So q is a positive integer strictly less than n. By the inductive hypothesis we can write

$$q = a'_{\ell}b^{\ell} + a'_{\ell-1}b^{\ell-1} + \dots + a'_1b + a'_0$$

with $a_i' \in \{0, 1, 2, \dots, b-1\}$ and $a_\ell' \neq 0$.

We therefore have

$$n = bq + r$$

$$= b(a'_{\ell}b^{\ell} + a'_{\ell-1}b^{\ell-1} + \dots + a'_{1}b + a'_{0}) + r$$

$$= a'_{\ell}b^{\ell+1} + a'_{\ell-1}b^{\ell} + \dots + a'_{1}b^{2} + a'_{0}b + r,$$

which is a base b expansion for n with $m = \ell + 1$, $a_0 = r$ and $a_i = a'_{i-1}$ for i > 1.

This completes the induction, and proves that every positive integer has a base b expansion.

We now prove uniqueness. Suppose that

$$a_m b^m + a_{m-1} b^{m-1} + \dots + a_1 b + a_0 = c_\ell b^\ell + c_{\ell-1} b^{\ell-1} + \dots + c_1 b + c_0,$$
 with $a_i, c_i \in \{0, 1, \dots, b-1\}$, $a_m \neq 0$ and $c_\ell \neq 0$.

Our first goal is to show that $m = \ell$. Notice that

$$a_{m}b^{m} + a_{m-1}b^{m-1} + \dots + a_{1}b + a_{0}$$

$$\leq (b-1)b^{m} + (b-1)b^{m-1} + \dots + (b-1)b + (b-1)$$

$$= (b-1)(b^{m} + b^{m-1} + \dots + b + 1)$$

$$= (b-1)\frac{b^{m+1} - 1}{b-1} = b^{m+1} - 1 < b^{m+1}.$$

Furthermore, since $c_{\ell} \neq 0$,

$$c_{\ell}b^{\ell} + c_{\ell-1}b^{\ell-1} + \cdots + c_1b + c_0 \geq b^{\ell}$$
.

Since we have assumed the two expansions agree, we conclude that

$$b^{\ell} < b^{m+1} \implies \ell < m+1 \implies \ell < m$$
.

Daileda Base b

By a symmetric argument, we find that $m \leq \ell$ as well, and hence $m=\ell$.

Now subtract the second expansion from the first:

$$(a_m-c_m)b^m+(a_{m-1}-c_{m-1})b^{m-1}+\cdots+(a_1-c_1)b+(a_0-b_0)=0.$$

Since $|a_i - c_i| < b$ for all i, we have

$$|(a_{m-1}-c_{m-1}) b^{m-1}+\cdots+(a_1-c_1)b+(a_0-b_0)|$$

 $\leq (b-1)b^{m-1}+\cdots+(b-1)b+(b-1)=b^m-1,$

as above.

This means that

$$|a_m - c_m|b^m \le b^m - 1,$$

Base b

which is impossible unless $a_m = c_m$.

Now repeat this argument to obtain $a_{m-1}=c_{m-1}$, $a_{m-2}=c_{m-2}$, etc. This completes our proof.

Remarks.

• We will denote the base b expansion

$$a_m b^m + a_{m-1} b^{m-1} + \cdots + a_1 b + a_0$$

by the base b place-value notation

$$(a_m a_{m-1} \cdots a_1 a_0)_b$$
.

When b = 10 we omit the parentheses.

• The existence proof above gives a recursive procedure for computing base *b* expansions through the division algorithm.

Example 1

Find the base 3 expansion of 709.

Solution. We have:

$$709 = 3 \cdot 236 + 1,$$

$$236 = 3 \cdot 78 + 2,$$

$$78 = 3 \cdot 26 + 0,$$

$$26 = 3 \cdot 8 + 2,$$

$$8 = 3 \cdot 2 + 2,$$

$$2 = 3 \cdot 0 + 2.$$

The remainders give the base 3 expansion:

$$709 = (222021)_3.$$

Example 2

Find the binary (base 2) expansion of 709.

Solution. We have:

$$709 = 2 \cdot 354 + 1, \quad 354 = 2 \cdot 177 + 0,$$

$$177 = 2 \cdot 88 + 1, \quad 88 = 2 \cdot 44 + 0,$$

$$44 = 2 \cdot 22 + 0, \quad 22 = 2 \cdot 11 + 0,$$

$$11 = 2 \cdot 5 + 1, \quad 5 = 2 \cdot 2 + 1,$$

$$2 = 2 \cdot 1 + 0, \quad 1 = 2 \cdot 0 + 1.$$

The remainders give the binary expansion:

$$709 = (1011000101)_2$$

Repeated Squaring

We can use binary expansions to give an extremely efficient algorithm for modular exponentiation.

Example 3

Find the remainder when 5^{709} is divided by 1234.

Solution. The binary expansion $709 = (1011000101)_2$ expresses 709 as a sum of powers of 2:

$$709 = 2^9 + 2^7 + 2^6 + 2^2 + 2^0.$$

We now compute the first 9 squares of 5, modulo 1234:

$$5^{2^0} = 5 \pmod{1234}, \quad 5^2 = 25 \pmod{1234},$$

 $5^{2^2} = (5^2)^2 = 625 \pmod{1234},$

$$5^{2^3} = (5^{2^2})^2 = 625^2 = 390625 \equiv 681 \pmod{1234},$$
 $5^{2^4} = (5^{2^3})^2 \equiv 681^2 = 463761 \equiv 1011 \pmod{1234},$
 $5^{2^5} = (5^{2^4})^2 \equiv 1011^2 = 1022121 \equiv 369 \pmod{1234},$
 $5^{2^6} = (5^{2^5})^2 \equiv 369^2 = 136161 \equiv 421 \pmod{1234},$
 $5^{2^7} = (5^{2^6})^2 \equiv 421^2 = 177241 \equiv 779 \pmod{1234},$
 $5^{2^8} = (5^{2^7})^2 \equiv 779^2 = 606841 \equiv 947 \pmod{1234},$
 $5^{2^9} = (5^{2^8})^2 \equiv 947^2 = 896809 \equiv 925 \pmod{1234}.$

Therefore

$$\begin{aligned} 5^{709} &= 5^{2^9 + 2^7 + 2^6 + 2^2 + 2^0} = 5^{2^9} \cdot 5^{2^7} \cdot 5^{2^6} \cdot 5^{2^2} \cdot 5^{2^0} \\ &\equiv 925 \cdot 779 \cdot 421 \cdot 625 \cdot 5 \equiv \boxed{147} \text{ (mod 1234)}. \end{aligned}$$

Divisibility Tests

Fix a base b > 1 and let d be any positive divisor of b - 1. Then $b \equiv 1 \pmod{d}$.

Let $n \in \mathbb{N}$ have the base b expansion $(a_m a_{m-1} \cdots a_0)_b$.

Then

$$n = a_m b^m + a_{m-1} b^{m-1} + \dots + a_1 b + a_0$$

$$\equiv a_m 1^m + a_{m-1} 1^{m-1} + \dots + a_1 \cdot 1 + a_0 \pmod{d}$$

$$\equiv a_m + a_{m-1} + \dots + a_1 + a_0 \pmod{d}.$$

We immediately obtain the following divisibility test.

Theorem 2

If
$$n = (a_m a_{m-1} \cdots a_0)_b$$
 and $d|b-1$, then $d|n$ if and only if $d|a_m + a_{m-1} + \cdots + a_1 + a_0$.

The nontrivial positive divisors of 10 - 1 = 9 are 3 and 9.

We can therefore test for divisibility by 3 or 9 by summing the decimal digits of an integer.

For example, if n = 9550684, then

$$9+5+5+0+6+8+4=37\not\equiv 0 \pmod{3}$$
,

so that $3 \nmid n$.

On the other hand, if n = 3788058, then

$$3+7+8+8+0+5+8=39\equiv 0\pmod 3$$
,

so that 3|n (but $9 \nmid n$).

Suppose instead that d|b+1. Then $b\equiv -1 \pmod d$ so that

$$(a_m a_{m-1} \cdots a_0)_b = a_m b^m + a_{m-1} b^{m-1} + \cdots + a_1 b + a_0$$

$$\equiv a_m (-1)^m + a_{m-1} (-1)^{m-1} + \cdots + a_1 (-1) + a_0 \pmod{d}$$

which is the alternating sum of the base b "digits."

Theorem 3

If $n = (a_m a_{m-1} \cdots a_0)_b$ and d|b+1, then d|n if and only if $d|(-1)^m a_m + (-1)^{m-1} a_{m-1} + \cdots - a_1 + a_0$.

If b=10, then b+1=11, so the only nontrivial choice for d is 11. Taking n=53084471 we find that

$$5-3+0-8+4-4+7-1=0$$

and hence 11|n.