Problem 1. Determine all possible values of the expression

$$
A^{3}+B^{3}+C^{3}-3 A B C
$$

where A, B and C are nonnegative integers.

Problem 2. Let $S_{1}, S_{2}, \ldots, S_{2^{n}-1}$ be the nonempty subsets of $\{1,2, \ldots, n\}$ in some order, and let M be the $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix whose (i, j) entry is

$$
m_{i j}= \begin{cases}0 & \text { if } S_{i} \cap S_{j}=\varnothing ; \\ 1 & \text { otherwise. }\end{cases}
$$

Calculate the determinant of M.

Problem 3. Let h and k be positive integers. Prove that for every $\epsilon>0$, there are positive integers m and n such that

$$
\epsilon<|h \sqrt{m}-k \sqrt{n}|<2 \epsilon
$$

Problem 4. Prove that every nonzero coefficient of the Taylor series of

$$
\left(1-x+x^{2}\right) e^{x}
$$

about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

