Putnam Seminar
FALL 2022

Quiz 7
Due October 17

Problem 1. Prove that there are only a finite number of possibilities for the ordered triple $T=(x-y, y-z, z-x)$, where x, y, z are complex numbers satisfying the simultaneous equations

$$
x(x-1)+2 y z=y(y-1)+2 z x=z(z-1)+2 x y,
$$

and list all such triples T.

Problem 2. Curves A, B, C and D are defined in the plane as follows:

$$
\begin{array}{ll}
A=\left\{(x, y): x^{2}-y^{2}=\frac{x}{x^{2}+y^{2}}\right\}, & B=\left\{(x, y): 2 x y+\frac{y}{x^{2}+y^{2}}=3\right\} \\
C=\left\{(x, y): x^{3}-3 x y^{2}+3 y=1\right\}, & D=\left\{(x, y): 3 x^{2} y-3 x-y^{3}=0\right\}
\end{array}
$$

Prove that $A \cap B=C \cap D$.

Problem 3. Prove that if

$$
11 z^{10}+10 i z^{9}+10 i z-11=0
$$

then $|z|=1$. (Here z is a complex number and $i^{2}=-1$.)

Problem 4. Let F be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^{2}+y^{2}=1$ with x and y in F is given by $(x, y)=(1,0)$ and

$$
(x, y)=\left(\frac{r^{2}-1}{r^{2}+1}, \frac{2 r}{r^{2}+1}\right)
$$

where r runs through the elements of F such that $r^{2} \neq-1$.

