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Consider the second order linear ODE

ay′′ + by′ + cy = 0, (1)

in which a, b, c are real constants and a ̸= 0. In class we found the general solution to (1) in
a somewhat ad hoc manner, by essentially guessing that it might have solutions of the form
y = erx, and then appealing to the Principal of Superposition (which we didn’t prove) to
glue these together into the general solution. Some students find this argument somewhat
unsatisfactory, however, since it isn’t entirely deductive. It is the goal of this note, therefore,
to provide an alternate deductive approach to solving (1).

Dividing both sides of (1) by a and renaming the coefficients yields an equation of the
form

y′′ + by′ + cy = 0. (2)

The key observation now is to notice that if we “split” b by writing b = r + s for some real
numbers r and s, then we can split the middle term by′ of (2) to get

y′′ + by′ + cy = y′′ + (r + s)y′ + cy = y′′ + ry′ + sy′ + cy = (y′ + ry)′ + (sy′ + cy) = 0.

The second term in parentheses (sy′ + cy) resembles the first (y′ + ry) multiplied by s. We
try to force these terms to be identical by setting

s(y′ + ry) = sy′ + cy ⇐⇒ sry = cy ⇐⇒ c = sr.

That is, if b = r+s and c = rs, then u = y′+ry solves the first order linear ODE u′+su = 0.

Using the integrating factor I = esx, one readily finds that u = Ce−sx, where C is an
arbitrary constant. Substituting this in u = y′+ry we obtain another first order linear ODE
in y: y′ + ry = Ce−sx. Multiplication by the integrating factor I = erx converts this into

(erxy)′ = Ce(r−s)x. (3)

If r ̸= s, integration and subsequent renaming of the constant C yields the general solution

y = c1e
−sx + c2e

−rx, (4)

where c2 is another arbitrary constant. When r = s equation (3) becomes

(erxy)′ = C,

and we instead find that
y = (c1x+ c2)e

−rx, (5)

where we have renamed C as c1. The only question that remains is: what are the values of
r and s? That is, how can we solve the system b = r + s and c = rs for r and s?



The easiest way to determine r and s is to notice that if b = r + s and c = rs, then

(X + r)(X + s) = X2 + (r + s)X + rs = X2 + bX + c.

In other words, r and s are the negatives of the roots r1 and r2 of the characteristic equation

X2 + bX + c = 0. (6)

of (2). Assuming the roots are both real, this means r = −r1, s = −r2, and from (4) and
(5) we obtain

y =

{
c1e

r1x + c2e
r2x when r1 ̸= r2,

(c1x+ c2)e
r1x when r1 = r2,

in agreement with solutions provided by the Principle of Superposition.

If the roots of (6) happen to be nonreal, then the quadratic formula shows that they must
have the form α± iβ, where α and β are real and β ̸= 0. Temporarily allowing the solutions
of our ODEs to be complex valued, the solution y = c1e

r1x + c2e
r2x given above is still valid,

and appealing to Euler’s formula (eiθ = cos θ + i sin θ) we have

y = eαx(c1e
iβx + c2e

−iβx)

= eαx ((c1 + c2) cos βx+ i(c1 − c2) sin βx) .

The constants C1 = c1 + c2 and C2 = i(c1 − c2) are now complex, and appear to be linked
to one another. But it is easy to see that c1 = (C1 − iC2)/2 and c2 = (C1 + iC2)/2, so that
the values of c1 and c2 are determined by C1 and C2, and vice versa. So we are free to write
the solution in the form

y = eαx (C1 cos βx+ C2 sin βx) ,

where C1 and C2 are arbitrary (independent) constants which we may choose to be real.

A somewhat more contrived, yet still deductive, argument can be use to treat the case of
nonreal complex roots of the characteristic equation. We start by setting u = yebx/2 so that
y = ue−bx/2. Then the product rule gives

y′ =

(
u′ − b

2
u

)
e−bx/2,

y′′ =

(
u′′ − bu′ +

b2

4

)
e−bx/2,

so that

y′′+ by′+ cy =

((
u′′ − bu′ +

b2

4
u

)
+ b

(
u′ − b

2

)
+ cu

)
e−bx/2 =

(
u′′ − 1

4
(b2 − 4c)u

)
e−bx/2.

Since the exponential function never vanishes, this shows that the original ODE (1) in y is
equivalent to

u′′ − 1

4
(b2 − 4c)u = 0.



According to the quadratic formula, the roots of the characteristic polynomial will be complex
and nonreal precisely when the discriminant b2 − 4ac is negative. So we rewrite the ODE
above as

u′′ +
1

4
(4c− b2)u = 0 ⇐⇒ u′′ + δ2u = 0,

in which the constant δ2 := 1
4
(4c − b2) is now positive. Anticipating the final form of the

solution we make another change of variable and set w = u sec δx. Then u = w cos δx and
the product rule eventually gives us

u′′ = w′′ cos δx− 2δw′ sin δx− δ2w cos δx,

so that

u′′ + δ2u = w′′ cos δx− 2δw′ sin δx− δ2w cos δx+ δ2w cos δx = w′′ cos δx− 2δw′ sin δx.

So the ODE u′′ + δ2u = 0 is equivalent to w′′ cos δx− 2δw′ sin δx = 0, which is separable in
w′. Indeed, reorganizing we have

w′′

w′ = 2δ tan δx,

and integration gives logw′ = −2 log cos δx+C. Thus w′ = C sec2 δx. One more integration
tells us that w = C tan δx+D and back substitution gives the penultimate result

u = w cos δx = C sin δx+D cos δx.

Finally we find that
y = e−bx/2u = e−bx/2 (C sin δx+D cos δx) .

This agrees with the earlier expression for y, since according to the quadratic formula

α± iβ =
−b±

√
b2 − 4c

2
=

−b

2
± i

√
4c− b2

2
=

−b

2
± iδ,

which shows that α = −b/2 and β = δ.


