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The Fundamental Theorem of Arithmetic (FTA) completely describes the multiplicative
structure of Z. It asserts that every (positive) integer n ≥ 2 can be uniquely expressed as a
product of prime numbers. Uniqueness in the FTA is, essentially, a consequence of a result
known as Euclid’s Lemma, which in turn follows from what we will call Bézout’s Lemma.
The latter is concerned with a certain relationship satisfied by greatest common divisors of
pairs of integers, a concept we now introduce.

Definition 1. Let a, b ∈ Z. We define their greatest common divisor (GCD) to be

gcd(a, b) = (a, b) = max{c ∈ N | c|a and c|b}

provided a and b aren’t both zero. We define gcd(0, 0) = (0, 0) = 0. N

Remark 1.

• Note that since the set defining (a, b) is bounded by max{|a|, |b|} (min{|a|, |b|} if a and
b are both nonzero), the GCD always exists.

• For any a ∈ Z, (a, 0) = |a|.

• Clearly (a, b) = (b, a).

• (8, 76) = 4, (91, 70) = 7, (72, 84) = 12, (54, 39) = 3, (16, 69) = 1

H

The fundamental property of the GCD that we will need is the following.

Lemma 1. Let a, b ∈ Z. For any n ∈ Z

(a, b) = (a, b + na).

Proof. If a = 0, there is nothing to prove. So we assume a 6= 0. It therefore suffices to prove
that

{c ∈ N | c|a and c|b}︸ ︷︷ ︸
A

= {c ∈ N | c|a and c|b + na}︸ ︷︷ ︸
B

.

Let c ∈ A. Then c|a and c|b, so that c divides the linear combination b + na. Hence c ∈ B
and A ⊆ B. Now let c ∈ B. Since c|a and c|b + na, c divides the linear combination
(b+na) + (−n)a = b. So c ∈ A and B ⊆ A. Therefore A = B and the proof is complete.
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Remark 2. The lemma shows that, as a function of b, (a, b) is periodic with period a. H

We can now connect the GCD with the Division Algorithm.

Corollary 1. Let a, b ∈ Z with a 6= 0. Write b = qa+ r as in the Division Algorithm. Then

(a, b) = (r, a).

Proof. According to the lemma we have

(a, b) = (a, qa + r) = (a, r) = (r, a).

We will now develop an efficient algorithm for computing (a, b). Given nonzero a, b ∈ Z,
consider the following sequence of divisions:

b = q1a + r1, 0 ≤ r1 < |a|,
a = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,

r2 = q4r3 + r4, 0 ≤ r4 < r3,

...

rk−1 = qk+1rk + rk+1, 0 ≤ rk+1 < rk, (1)

...

rn−1 = qn+1rn, rn+1 = 0.

Because rk ∈ N0 and r1 > r2 > r3 > · · · , we are guaranteed that eventually rk = 0. Notice
that according to Corollary 1

(a, b) = (r1, a) = (r2, r1) = (r3, r2) = · · · = (rn+1, rn) = (0, rn) = rn,

i.e. the last nonzero remainder is equal to (a, b). So we can compute (a, b) through repeated
application of the Division Algorithm. This process is known as the Euclidean Algorithm.

Example 1. Let’s use the Euclidean Algorithm to compute (336, 726). We have

726 = 2 · 336 + 54,

336 = 6 · 54 + 12,

54 = 4 · 12 + 6,

12 = 2 · 6.

The last nonzero remainder is 6. Hence

(336, 726) = 6.

�

The quotients qk in the Euclidean Algorithm appear to play no role in the computation
of (a, b). However, if we reformulate the Euclidean Algorithm as a two-dimensional linear
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recursion, we will discover that the quotients yield a “hidden” relationship between a, b and
(a, b). Let

x0 =

(
b
a

)
,x1 =

(
a
r1

)
,xk =

(
rk−1

rk

)
for k ≥ 2

and

Qk =

(
0 1
1 −qk

)
for k ≥ 1.

Notice that according to equation (1)

xk+1 =

(
rk
rk+1

)
=

(
rk

rk−1 − qk+1rk

)
=

(
0 1
1 −qk+1

)(
rk−1

rk

)
= Qk+1xk

for all k ≥ 0. We therefore have

xn = Qnxn−1

= QnQn−1xn−2

...

= QnQn−1 · · ·Q1x0.

Equivalently

QnQn−1 · · ·Q1

(
b
a

)
=

(
∗

(a, b)

)
. (2)

If we write

QnQn−1 · · ·Q1 =

(
∗ ∗
s r

)
,

then equation (2) implies that (a, b) = ra + sb. We have just proven the following result.

Theorem 1 (Bézout’s Lemma). Let a, b ∈ Z. There exist r, s ∈ Z so that

(a, b) = ra + sb.

Remark 3.

• Note that the Euclidean Algorithm produces the matrices Qk thereby allowing us to
compute r and s in Bézout’s Lemma explicitly. Although the mere existence of r and
s is sufficient for our purposes now, later on we will need to know how to actually find
them, and the technique above is the most efficient way to do so.

• On the other hand, the “standard” proof of Bézout’s Lemma presented in most text-
books is nonconstructive. One argues that the least element of

N ∩ {ra + sb | r, s ∈ Z}

is (a, b). This proves that (a, b) = ra + sb for some r, s ∈ Z, but gives no indication as
to how such a pair might be found.

• r and s are not unique. For example, one can replace a given pair r, s with r + mb,
s−ma for any m ∈ Z.
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Example 2. In the course of applying the Euclidean Algorithm to the computation of
(336, 726) we found that q1 = 2, q2 = 6 and q3 = 4. Hence

Q1 =

(
0 1
1 −2

)
, Q2 =

(
0 1
1 −6

)
, Q3 =

(
0 1
1 −4

)
so that

Q3Q2Q1 =

(
0 1
1 −4

)(
0 1
1 −6

)(
0 1
1 −2

)
=

(
−6 13
25 −54

)
.

Hence we can take r = −54 and s = 25 in Bézout’s Lemma. That is

−54 · 336 + 25 · 726 = (336, 726) = 6.

�

Note that in general we don’t require the final line of the Euclidean Algorithm when
computing r and s in Bézout’s Lemma via the procedure above.

We now turn to our first application of Bézout’s Lemma, which is the classification of the
set of linear combinations of a given pair of integers. We introduce the following notation.
Given a ∈ Z, let aZ denote the set of multiples of a:

aZ = {an |n ∈ Z}.

That is, aZ is the set of integers divisible by a. And for S, T ⊂ Z, let

S + T = {s + t | s ∈ S, t ∈ T}.

Notice that in this notation, aZ + bZ is then the set of linear combinations of a and b.

Theorem 2. Let a, b ∈ Z. Then

aZ + bZ = (a, b)Z.

In other words, the multiples of (a, b) coincide with the linear combinations of a and b.

Proof. Since (a, b) divides both a and b, (a, b) divides every linear combination of (a, b). So
every element of aZ + bZ is a multiple of (a, b). That is,

aZ + bZ ⊆ (a, b)Z.

Now let c ∈ (a, b)Z. Then c = (a, b)d for some d ∈ Z. Use Bézout’s Lemma to write
(a, b) = ra + sb, with r, s ∈ Z. Then

c = (a, b)d = (ra + sb)d = (ra)d + (sb)d = (rd)a + (sd)b ∈ aZ + bZ.

This shows that (a, b)Z ⊆ aZ + bZ and finishes the proof.
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