Greatest Common Divisors

R. C. Daileda

September 1, 2020

The Fundamental Theorem of Arithmetic (FTA) completely describes the multiplicative structure of \mathbb{Z}. It asserts that every (positive) integer $n \geq 2$ can be uniquely expressed as a product of prime numbers. Uniqueness in the FTA is, essentially, a consequence of a result known as Euclid's Lemma, which in turn follows from what we will call Bézout's Lemma. The latter is concerned with a certain relationship satisfied by greatest common divisors of pairs of integers, a concept we now introduce.

Definition 1. Let $a, b \in \mathbb{Z}$. We define their greatest common divisor (GCD) to be

$$
\operatorname{gcd}(a, b)=(a, b)=\max \{c \in \mathbb{N}|c| a \text { and } c \mid b\}
$$

provided a and b aren't both zero. We define $\operatorname{gcd}(0,0)=(0,0)=0$.

Remark 1.

- Note that since the set defining (a, b) is bounded by $\max \{|a|,|b|\}(\min \{|a|,|b|\}$ if a and b are both nonzero), the GCD always exists.
- For any $a \in \mathbb{Z},(a, 0)=|a|$.
- Clearly $(a, b)=(b, a)$.
- $(8,76)=4,(91,70)=7,(72,84)=12,(54,39)=3,(16,69)=1$

The fundamental property of the GCD that we will need is the following.
Lemma 1. Let $a, b \in \mathbb{Z}$. For any $n \in \mathbb{Z}$

$$
(a, b)=(a, b+n a) .
$$

Proof. If $a=0$, there is nothing to prove. So we assume $a \neq 0$. It therefore suffices to prove that

$$
\underbrace{\{c \in \mathbb{N}|c| a \text { and } c \mid b\}}_{A}=\underbrace{\{c \in \mathbb{N}|c| a \text { and } c \mid b+n a\}}_{B} .
$$

Let $c \in A$. Then $c \mid a$ and $c \mid b$, so that c divides the linear combination $b+n a$. Hence $c \in B$ and $A \subseteq B$. Now let $c \in B$. Since $c \mid a$ and $c \mid b+n a, c$ divides the linear combination $(b+n a)+(-n) a=b$. So $c \in A$ and $B \subseteq A$. Therefore $A=B$ and the proof is complete.

Remark 2. The lemma shows that, as a function of $b,(a, b)$ is periodic with period a.
We can now connect the GCD with the Division Algorithm.
Corollary 1. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Write $b=q a+r$ as in the Division Algorithm. Then

$$
(a, b)=(r, a)
$$

Proof. According to the lemma we have

$$
(a, b)=(a, q a+r)=(a, r)=(r, a)
$$

We will now develop an efficient algorithm for computing (a, b). Given nonzero $a, b \in \mathbb{Z}$, consider the following sequence of divisions:

$$
\begin{align*}
b=q_{1} a+r_{1}, & 0 \leq r_{1}<|a|, \\
a=q_{2} r_{1}+r_{2}, & 0 \leq r_{2}<r_{1}, \\
r_{1}=q_{3} r_{2}+r_{3}, & 0 \leq r_{3}<r_{2}, \\
r_{2}=q_{4} r_{3}+r_{4}, & 0 \leq r_{4}<r_{3}, \\
\vdots & \\
r_{k-1}=q_{k+1} r_{k}+r_{k+1}, & 0 \leq r_{k+1}<r_{k}, \tag{1}\\
& \vdots \\
r_{n-1}=q_{n+1} r_{n}, & r_{n+1}=0 .
\end{align*}
$$

Because $r_{k} \in \mathbb{N}_{0}$ and $r_{1}>r_{2}>r_{3}>\cdots$, we are guaranteed that eventually $r_{k}=0$. Notice that according to Corollary 1

$$
(a, b)=\left(r_{1}, a\right)=\left(r_{2}, r_{1}\right)=\left(r_{3}, r_{2}\right)=\cdots=\left(r_{n+1}, r_{n}\right)=\left(0, r_{n}\right)=r_{n}
$$

i.e. the last nonzero remainder is equal to (a, b). So we can compute (a, b) through repeated application of the Division Algorithm. This process is known as the Euclidean Algorithm.

Example 1. Let's use the Euclidean Algorithm to compute (336, 726). We have

$$
\begin{aligned}
726 & =2 \cdot 336+54 \\
336 & =6 \cdot 54+12 \\
54 & =4 \cdot 12+6 \\
12 & =2 \cdot 6
\end{aligned}
$$

The last nonzero remainder is 6 . Hence

$$
(336,726)=6
$$

The quotients q_{k} in the Euclidean Algorithm appear to play no role in the computation of (a, b). However, if we reformulate the Euclidean Algorithm as a two-dimensional linear
recursion, we will discover that the quotients yield a "hidden" relationship between a, b and (a, b). Let

$$
\mathbf{x}_{0}=\binom{b}{a}, \mathbf{x}_{1}=\binom{a}{r_{1}}, \mathbf{x}_{k}=\binom{r_{k-1}}{r_{k}} \text { for } k \geq 2
$$

and

$$
Q_{k}=\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{k}
\end{array}\right) \text { for } k \geq 1
$$

Notice that according to equation (1)

$$
\mathbf{x}_{k+1}=\binom{r_{k}}{r_{k+1}}=\binom{r_{k}}{r_{k-1}-q_{k+1} r_{k}}=\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{k+1}
\end{array}\right)\binom{r_{k-1}}{r_{k}}=Q_{k+1} \mathbf{x}_{k}
$$

for all $k \geq 0$. We therefore have

$$
\begin{aligned}
\mathbf{x}_{n} & =Q_{n} \mathbf{x}_{n-1} \\
& =Q_{n} Q_{n-1} \mathbf{x}_{n-2} \\
& \vdots \\
& =Q_{n} Q_{n-1} \cdots Q_{1} \mathbf{x}_{0} .
\end{aligned}
$$

Equivalently

$$
\begin{equation*}
Q_{n} Q_{n-1} \cdots Q_{1}\binom{b}{a}=\binom{*}{(a, b)} . \tag{2}
\end{equation*}
$$

If we write

$$
Q_{n} Q_{n-1} \cdots Q_{1}=\left(\begin{array}{cc}
* & * \\
s & r
\end{array}\right),
$$

then equation (2) implies that $(a, b)=r a+s b$. We have just proven the following result.
Theorem 1 (Bézout's Lemma). Let $a, b \in \mathbb{Z}$. There exist $r, s \in \mathbb{Z}$ so that

$$
(a, b)=r a+s b
$$

Remark 3.

- Note that the Euclidean Algorithm produces the matrices Q_{k} thereby allowing us to compute r and s in Bézout's Lemma explicitly. Although the mere existence of r and s is sufficient for our purposes now, later on we will need to know how to actually find them, and the technique above is the most efficient way to do so.
- On the other hand, the "standard" proof of Bézout's Lemma presented in most textbooks is nonconstructive. One argues that the least element of

$$
\mathbb{N} \cap\{r a+s b \mid r, s \in \mathbb{Z}\}
$$

is (a, b). This proves that $(a, b)=r a+s b$ for some $r, s \in \mathbb{Z}$, but gives no indication as to how such a pair might be found.

- r and s are not unique. For example, one can replace a given pair r, s with $r+m b$, $s-m a$ for any $m \in \mathbb{Z}$.

Example 2. In the course of applying the Euclidean Algorithm to the computation of $(336,726)$ we found that $q_{1}=2, q_{2}=6$ and $q_{3}=4$. Hence

$$
Q_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right), Q_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & -6
\end{array}\right), Q_{3}=\left(\begin{array}{cc}
0 & 1 \\
1 & -4
\end{array}\right)
$$

so that

$$
Q_{3} Q_{2} Q_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -4
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -6
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right)=\left(\begin{array}{cc}
-6 & 13 \\
25 & -54
\end{array}\right) .
$$

Hence we can take $r=-54$ and $s=25$ in Bézout's Lemma. That is

$$
-54 \cdot 336+25 \cdot 726=(336,726)=6
$$

Note that in general we don't require the final line of the Euclidean Algorithm when computing r and s in Bézout's Lemma via the procedure above.

We now turn to our first application of Bézout's Lemma, which is the classification of the set of linear combinations of a given pair of integers. We introduce the following notation. Given $a \in \mathbb{Z}$, let $a \mathbb{Z}$ denote the set of multiples of a :

$$
a \mathbb{Z}=\{a n \mid n \in \mathbb{Z}\}
$$

That is, $a \mathbb{Z}$ is the set of integers divisible by a. And for $S, T \subset \mathbb{Z}$, let

$$
S+T=\{s+t \mid s \in S, t \in T\}
$$

Notice that in this notation, $a \mathbb{Z}+b \mathbb{Z}$ is then the set of linear combinations of a and b.
Theorem 2. Let $a, b \in \mathbb{Z}$. Then

$$
a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}
$$

In other words, the multiples of (a, b) coincide with the linear combinations of a and b.
Proof. Since (a, b) divides both a and $b,(a, b)$ divides every linear combination of (a, b). So every element of $a \mathbb{Z}+b \mathbb{Z}$ is a multiple of (a, b). That is,

$$
a \mathbb{Z}+b \mathbb{Z} \subseteq(a, b) \mathbb{Z}
$$

Now let $c \in(a, b) \mathbb{Z}$. Then $c=(a, b) d$ for some $d \in \mathbb{Z}$. Use Bézout's Lemma to write $(a, b)=r a+s b$, with $r, s \in \mathbb{Z}$. Then

$$
c=(a, b) d=(r a+s b) d=(r a) d+(s b) d=(r d) a+(s d) b \in a \mathbb{Z}+b \mathbb{Z} .
$$

This shows that $(a, b) \mathbb{Z} \subseteq a \mathbb{Z}+b \mathbb{Z}$ and finishes the proof.

