

Number Theory Fall 2023

Assignment 11.1 Due November 15

Exercise 1. Let $d, n \in \mathbb{N}$ with d|n. In class we showed that the rule $a + n\mathbb{Z} \mapsto a + d\mathbb{Z}$ yields a well-defined function

$$R: (\mathbb{Z}/n\mathbb{Z})^{\times} \to (\mathbb{Z}/d\mathbb{Z})^{\times}.$$

Show that R is surjective as follows.

- **a.** Let $a, k \in \mathbb{Z}$ with (a, d) = 1. Show that if a prime p divides (a + kd, n), then $p \mid n$ and $p \nmid d$.
- **b.** Let p_1, p_2, \ldots, p_r be the primes dividing *n* that don't divide *d*. Use the CRT to show that there is a $k \in \mathbb{Z}$ so that $dk \equiv 1 a \pmod{p_i}$ for all *i*.
- **c.** With $k \in \mathbb{Z}$ chosen as above, show that (a + kd, n) = 1. [Suggestion: Use parts **a** and **b** to show that (a + kd, n) has no prime divisors.]
- **d.** Parts **a c** show that for any $a \in \mathbb{Z}$ with (a, d) = 1, there exists $k \in \mathbb{Z}$ so that (a + kd, n) = 1. Use this to conclude that R is surjective.
- Exercise 2. Textbook exercise 7.2.1.
- Exercise 3. Textbook exercise 7.2.14.
- Exercise 4. Textbook exercise 7.3.1c.
- **Exercise 5.** Textbook exercise 7.3.4.
- Exercise 6. Textbook exercise 7.3.5.
- Exercise 7. Textbook exercise 7.3.9.