Number Theory

Primitive Roots Practice Exercises

Exercise 1. If $f(X), g(X) \in \mathbb{Z}[X]$ are nonzero polynomials satisfying

$$
f(X)=(X-a) g(X)+b
$$

for some $a, b \in \mathbb{Z}$, show that $f(X)$ and $g(X)$ have the same leading coeficient.

Exercise 2. If $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are integers satisfying $0 \leq a_{k} \leq b_{k}$ for all k, show that

$$
\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} b_{k} \Rightarrow a_{k}=b_{k} \text { for all } k
$$

Exercise 3. Let p be an odd prime. Use the Binomial Theorem to verify the following assertions made during Monday's lecture.
a. For any $r \in \mathbb{Z}$ one has $(r+p)^{p-1} \equiv r^{p-1}+(p-1) p r^{p-2}\left(\bmod p^{2}\right)$.
b. For any $k \geq 2$ and $a \in \mathbb{Z}$ one has $\left(1+a p^{k-1}\right)^{p} \equiv 1+a p^{k}\left(\bmod p^{k+1}\right)$.

Exercise 4. Textbook exercise 8.3.1

Exercise 5. Textbook exercise 8.3.3

Exercise 6. Textbook exercise 8.3.4

Exercise 7. Textbook exercise 8.3.6a

Exercise 8. Textbook exercise 8.3.8

Exercise 9. Textbook exercise 8.3.11

