

PRIMITIVE ROOTS PRACTICE EXERCISES

Exercise 1. If $f(X), g(X) \in \mathbb{Z}[X]$ are nonzero polynomials satisfying

$$f(X) = (X - a)g(X) + b$$

for some $a, b \in \mathbb{Z}$, show that f(X) and g(X) have the same leading coefficient.

Exercise 2. If a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are integers satisfying $0 \le a_k \le b_k$ for all k, show that

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} b_k \implies a_k = b_k \text{ for all } k.$$

Exercise 3. Let p be an odd prime. Use the Binomial Theorem to verify the following assertions made during Monday's lecture.

a. For any $r \in \mathbb{Z}$ one has $(r+p)^{p-1} \equiv r^{p-1} + (p-1)pr^{p-2} \pmod{p^2}$.

b. For any $k \ge 2$ and $a \in \mathbb{Z}$ one has $(1 + ap^{k-1})^p \equiv 1 + ap^k \pmod{p^{k+1}}$.

Exercise 4. Textbook exercise 8.3.1

- Exercise 5. Textbook exercise 8.3.3
- Exercise 6. Textbook exercise 8.3.4
- Exercise 7. Textbook exercise 8.3.6a
- **Exercise 8.** Textbook exercise 8.3.8
- Exercise 9. Textbook exercise 8.3.11

Number Theory Fall 2023